Can a particle in an inverse square potential V(r)=−1/r2
Answer
One may show that the inverse square potential
V(r) = ℏ22mcr2 ∝ 1r2,
in d spatial dimensions mathematically speaking has three alternatives, depending on the dimensionless proportionality constant cd ≡ (d−1)(d−3)4+c ≡ ϰ2−14 ∈ R.
Case cd<−14: The spectrum is unbounded from below, i.e. the system is unstable.
Case cd≥34: There are no bound states at all.
Case −14≤cd<34: It is possible to define asymptotic boundary conditions (ABCs) at r=0 / selfadjoint extensions of the Hamiltonian, such that the spectrum is bounded from below. Some of these extensions have bound states, others have not.
From a physics point of view, it may seem unnatural that conclusions depend on adjustable ABCs imposed at r=0. The usual physics lore is that an inverse square potential is only an effective description, and that presumably new physics should emerge to resolve the singularity at r=0. From now on in this answer, we only discuss the purely mathematical problem at hand, even if it is somewhat academic.
First of all, angular excitations only push the energy up, never down, so it is enough to analyze spherically symmetric s-waves ψ(r) ≡ r1−d2u(r),u(r) ≡ √r v(r),
2mℏ2⟨ψ|ˆHψ⟩Vol(Sd−1) = ∫R+rd−1 dr ψ(r)∗(−∂2∂r2−d−1r∂∂r+cr2)ψ(r) = ∫R+dr u(r)∗(−∂2∂r2+cdr2)u(r) = ∫R+dr v(r)∗(−∂∂rr∂∂r+ϰ2r)v(r).
1) Sketched proof of case cd<−14: Let us study a trial/test function
$$ u(r)~=~ r^{p}e^{-r/2}, \qquad \frac{1}{2}~
in the limit
p ↘ 12.
The square norm
||ψ||2Vol(Sd−1) = ∫R+dr |u(r)|2 = (2p)! ↘ 1forp ↘ 12
is finite. The energy functional (4) simplifies to (after integration by parts)
2mℏ2⟨ψ|ˆH|ψ⟩Vol(Sd−1) (4)= ∫R+dr(|u′(r)|2+cdr2|u(r)|2) = ∫R+dr((p−r2)2+cd)r2p−2e−r = (p2+cd)⏟<0∫R+dr r2p−2e−r⏟=(2p−2)!+finite terms → −∞forp ↘ 12,
and is unbounded from below. ◻
In light of the previous section, let us assume that ϰ2 ≡ cd+14≥0 from now on. The radial TISE
ℏ22m(−1r∂∂rr∂∂r+ϰ2r2)v(r) = −|E|v(r),v(r=∞) = 0,
for bound states becomes the modified Bessel equation. The solution
v(r) ∝ Kϰ(ρ) ∝ −sin(ϰπ)π/2Kϰ(ρ) = Iϰ(ρ)−I−ϰ(ρ) ρ≪1∼ (ρ/2)ϰΓ(1+ϰ)−(2/ρ)ϰΓ(1−ϰ),
is a modified Bessel function of the second kind. The problem (9) has a scale symmetry, so that the energy spectrum becomes unbounded from below unless we impose a pertinent ABC at r=0.
2) Sketched proof of case cd≥34⇔ϰ≥1: The ψ-wavefunction (10) is not square integrable at r=0. In other words, pertinent ABC at r=0 prohibits the ψ-wavefunction (10). ◻
3) Sketched proof of case −14≤cd<34⇔0≤ϰ<1: We now impose ABC (12) at r=0:
v(r) ∝ (k0r)ϰ+λ(k0r)−ϰ+O(r),k0r ≪ 1,λ ∈ R,
where
k0 ≡ mcℏ
is the Compton wavenumber, i.e. the reciprocal reduced Compton wavelength. Here λ∈R is a fixed dimensionless parameter. Comparing eqs. (10) & (11), in the case 0<ϰ<1, this leads to a single bound state
E = −2mc2|λΓ(1−ϰ)Γ(1+ϰ)|−1/ϰforλ < 0,
and no bound states if λ≥0. The case ϰ=0 has similar conclusions. See Ref. 3 for details. ◻
References:
A.M. Essin & D.J. Griffiths, Quantum mechanics of the 1/x2 potential, Am. J. Phys. 74 (2006) 109.
L.D. Landau & E.M. Lifshitz, QM, Vol. 3, 3rd ed, 1981; §35.
D.M. Gitman, I.V. Tyutin & B.L. Voronov, arXiv:0903.5277. (Hat tip: JamalS.)
No comments:
Post a Comment