Sunday, 8 November 2015

special relativity - Pure Lorentz boost; transpose $neq$ inverse?


By definition a matrix representing a Lorentz transformation is orthogonal, so that its inverse is equal to its transpose.


Consider a pure boost in the t-x plane; $$\Lambda_x=\begin{pmatrix} \cosh(\gamma) && \sinh(\gamma) && 0 && 0\\ \sinh(\gamma) && \cosh(\gamma) && 0 && 0\\ 0 && 0 && 1 && 0\\ 0&&0&&0&&1 \end{pmatrix}.$$ $\Lambda_x$ has inverse $$\Lambda_x^{-1}=\begin{pmatrix} \cosh(\gamma) && -\sinh(\gamma) && 0&&0\\ -\sinh(\gamma) && \cosh(\gamma) && 0&&0\\ 0 && 0 && 1 &&0\\ 0&&0&&0&&1 \end{pmatrix}$$ but tranpose $$\Lambda_x^T=\begin{pmatrix} \cosh(\gamma) && \sinh(\gamma) && 0&&0\\ \sinh(\gamma) && \cosh(\gamma) && 0&&0\\ 0 && 0 && 1&&0\\ 0&&0&&0&&1 \end{pmatrix}.$$ These are not equal. Where have I gone wrong?



Answer



The matrix representing a Lorentz boost is orthogonal with respect to the Minkowski metric $\eta = \mathrm{diag}(-1,1,1,1)$ (or reversed signs), which means $$ \Lambda \eta \Lambda^T = \eta \text{ or } \Lambda^{-1} = \eta \Lambda^T\eta.$$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...