Sunday, 11 September 2016

klein gordon equation - What wavefunctions do the creation operator of a massive real scalar free field create?


A real scalar free field of mass $m$ can be represented as:


$$\hat\phi(\mathbf{x}) = \int \frac{d^3\mathbf{k}}{(2\pi)^3\sqrt{2\omega_{\mathbf{k}}}}\hat a_{\mathbf{k}}e^{i(\omega_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} + \hat a^\dagger_{\mathbf{k}} e^{-i(\omega_{\mathbf{k}} t + \mathbf{k} \cdot \mathbf{x})},$$


where $\omega_{\mathbf{k}} = \sqrt{|\mathbf{k}|^2 + m^2}$.


What wavefunction does the creation operator $\hat a^\dagger_{\mathbf{k}}$ create from the vacuum state? Is it the momentum eigenstate $e^{i\mathbf{k}\cdot\mathbf{x}}$? If so, how can I show this?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...