The constraint forces have the dot product 0 (C⋅x=0, where C and x are vectors, x being the virtual displacement. But the dot product is 0 if C and x are perpendicular. So, are the constraint forces always perpendicular to the virtual displacement? Forces such as tension are not always perpendicular to the virtual displacement. Thus, I am asking why forces like tension are not written in the lagrangian equation of lagrangian mechanics? To be more specific, see the example of the Atwood machine.
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
-
Problem Statement: Imagine a spherical ball is dropped from a height h, into a liquid. What is the maximum average height of the displaced...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
No comments:
Post a Comment