Thursday, 12 July 2018

quantum mechanics - Is what statisticians call a "random variable" what physicists call an "observable" in QM?



I read at http://www.statlect.com/fundamentals-of-probability/random-variables that



A random variable is a variable whose value depends on the outcome of a probabilistic experiment. Its value is a priori unknown, but it becomes known once the outcome of the experiment is realized.



That sounds to me like the definition of an observable in quantum mechanics modeled by hermitian operators. In addition it seems to me what statisticians call realization of a random value is what physicists call eigenvalue of a hermitian operator. The set of realizations of a random variable would then be the spectrum (set of eigenvalues) of an operator. So could I tell a statistician that a "random variable" is in fact an operator?





No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...