I simply know that a single free quark does not exist. What is the reason that we can not get a free quark?
If we can't get a free quark then what is single-top-quark?
Answer
A free quark is like the free end of a rubber band. If you want to make the ends of a rubber band free you have to pull them apart, however the farther apart you pull them the more energy you have to put in. If you wanted to make the ends of the rubber band truly free you'd have to make the separation between them infinite, and that would require infinite energy. What actually happens is that the rubber band snaps and you get four ends instead of the two you started with.
Similarly, if you take two quarks and try and pull them apart the force between them is approximately independent of distance, so to pull them apart to infinity would take infinite energy. What actually happens is that at some distance the energy stored in the field between them gets high enough to create more quarks, and in stead of two separated quarks you get two pairs of quarks.
This doesn't happen when you pull apart a proton and electron because the force between them falls according to the inverse square law. The difference between the electron/proton pair and a pair of quarks is that the force between the quarks doesn't fall according to the inverse square law. Instead at sufficiently long distances it becomes roughly constant.
I don't think this is fully understood (it certainly isn't fully understood by me :-), but it's thought to be because the lines of force in the quark-quark field represent virtual gluons, and gluons attract each other. This means the lines of force collect together to form a flux tube. By contrast the electron-proton force is transmitted by virtual photons and photons do not attract each other.
Finally, top quarks are usually produced as a top anti-top pair. It is possible to create a single top quark, but it's always paired with a quark of a different type so you aren't creating a free quark.
No comments:
Post a Comment