Wednesday, 4 September 2019

statistical mechanics - Continuum Field Theory for the Ising Model


My problem is to take the $d$-dimensional Ising Hamiltonian, $$H = -\sum_{i,j}\sigma_i J_{i,j} \sigma_j - \sum_{i} \tilde{h}_i \sigma_i$$ where $J_{ij}$ is a matrix describing the couplings between sites $i$ and $j$. Applying a Hubbard-Stratonovich transformation, rewrite the partition function as $$Z = N_0 \int d^N \psi \exp\left\{-\left[\frac{1}{4}\sum_{i,j} \psi_i K_{ij} \psi_j - \sum_{i} \ln[\cosh(h_i+\psi_i)]\right]\right\}$$ where $N_0$ is an overall normalization constant, $K_{ij} = (\beta J_{ij})^{-1}$, and $h_i = \beta\tilde{h}_i$. This much is relatively straightforward. We write the field as $\psi_i = \phi_i - h_i$, and we can show that $\left<\phi_i\right> \propto J_{ij} \left<\sigma_j\right>$, i.e. it can be interpreted as a "mean field" at site $i$ due to the interaction with all other sites.


Next we assume that the variation in the field is small, $\left|\phi_i\right|<<1$, we set $h_i = 0$, and expand $\ln \cosh(x) \approx \frac{1}{2}x^2 - \frac{1}{12}x^4$ to get $$Z \approx N_0\int d^N\psi \exp\left\{-\left[\frac{1}{4}\sum_{i,j}\phi_i K_{ij} \phi_j - \sum_i \left[\frac{\phi_i^2}{2} - \frac{\phi_i^4}{12}\right]\right]\right\}$$


Now we take the continuum limit, in units where the lattice spacing is unity, labeling each site by its position $\mathbf{r}$, which gives $$Z\rightarrow \mathcal{N} \int \mathcal{D}\phi\, \exp\left\{-\frac{1}{2}\left[\frac{1}{2}\int d\mathbf{r}\,d\mathbf{r}'\,\phi(\mathbf{r}) K(\mathbf{r}-\mathbf{r}') \phi(\mathbf{r}') - \int d\mathbf{r}\,\left[\phi(\mathbf{r})^2 - \frac{\phi(\mathbf{r})^4}{6}\right]\right]\right\}$$


This is where I am not sure how to proceed. I am told to expand $\phi(\mathbf{r}')$ as a small variation from the value at $\mathbf{r}$, i.e. $$\phi(\mathbf{r}') \approx \phi(\mathbf{r}) + (x_\mu'-x_\mu)\partial_\mu \phi(\mathbf{r}) + \frac{1}{2}(x_\mu' - x_\mu)(x_{\nu}'-x_\nu)\partial_\mu \partial_\nu \phi(\mathbf{r}) + \cdots$$ and introduce the Fourier transform $\tilde{K}(\mathbf{q}) = \int d\mathbf{r} K(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}}$ and write the continuum action as $$S = \int d^d\mathbf{r} \left[c_1 \left(\partial \phi\right)^2 + c_2 \phi^2 + c_4 \phi^4\right]$$ and find the coefficients in terms of $\tilde{K}(0)$ and $\tilde{K}''(0)$.


I believe that I can argue that $K$ is only a function of $\left|\mathbf{r}-\mathbf{r}'\right|$, in which case $K(\mathbf{r}-\mathbf{r}')(x_\mu'-x_\mu)$ is odd about the point $\mathbf{r}$, and so integrating over $d\mathbf{r}'$ (treating $\mathbf{r}$ as constant) will kill any term except those which depend on the square of the difference, leaving me with $$\int d\mathbf{r}\,d\mathbf{r}'\,\phi(\mathbf{r}) K(\mathbf{r}-\mathbf{r}') \phi(\mathbf{r}') = \int d\mathbf{r}\,d\mathbf{r}' K(\mathbf{r}-\mathbf{r}')\left(\phi(\mathbf{r})^2 + \frac{1}{2}(x_\mu'-x_\mu)^2\phi(\mathbf{r})\partial_\mu^2 \phi(\mathbf{r})\right) $$


The first term I can deal with, but it's the second term that I don't know how to deal with.




Answer



You can write the (scaled) interaction part of the action as: $$S_I \equiv \int_{\mathbb R^d}d^d \mathbf r \ \phi(\mathbf r)\int_{\mathbb R^d}d^d \mathbf r' \ K(\mathbf r-\mathbf r') \ \phi(\mathbf r')$$ Let's take the inner integral over $\mathbf r'$ first (I will call it $\mathcal I$ to make things easier). Expanding $\phi(\mathbf r')$ around $\mathbf r$ gives : $$\mathcal I \equiv\int_{\mathbb R^d}d^d \mathbf r' \ K(\mathbf r-\mathbf r') \ \phi(\mathbf r') \approx \int_{\mathbb R^d}d^d \mathbf r' \ K(\mathbf r-\mathbf r') \ \bigg(\phi(\mathbf r)+ \sum_{i=1}^d (x_i'-x_i)\partial_i \phi(\mathbf r) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\frac 12\sum_{i=1}^d\sum_{j=1}^d (x_i'-x_i)(x_j'-x_j)\partial_i \partial_j \phi(\mathbf r) \bigg)$$ Now take the integral inside to get: $$\mathcal I\approx \phi(\mathbf r) \int_{\mathbb R^d}d^d \mathbf r' \ K(\mathbf r-\mathbf r') \ + \sum_{i=1}^d \partial_i \phi(\mathbf r)\int_{\mathbb R^d}d^d \mathbf r' \ (x_i'-x_i) K(\mathbf r-\mathbf r') +\frac 12\sum_{i=1}^d\sum_{j=1}^d \partial_i \partial_j \phi(\mathbf r) \times\int_{\mathbb R^d}d^d \mathbf r'(x_i'-x_i)(x_j'-x_j)K(\mathbf r-\mathbf r') \bigg)$$ Now assuming that the coupling is homogenous, $K(\mathbf r-\mathbf r')\equiv K(\mathbf r'-\mathbf r)$. With that in mind, and also changing variables $\mathbf R \equiv \mathbf r'-\mathbf r$, we get:


$$\mathcal I \approx \phi(\mathbf r) \int_{\mathbb R^d}d^d \mathbf R \ K(\mathbf R) \ + \sum_{i=1}^d \partial_i \phi(\mathbf r)\int_{\mathbb R^d}d^d \mathbf R \ R_i K(\mathbf R) +\frac 12\sum_{i=1}^d\sum_{j=1}^d \partial_i \partial_j \phi(\mathbf r) \ \ \ \ \times\int_{\mathbb R^d}d^d \mathbf R \ R_iR_jK(\mathbf R) \bigg)$$ You can relate each of the integrals over $\mathbf R$ to the Fourier transform of $K(\mathbf R)$ defined as $\tilde K(\mathbf q) \equiv \int_{\mathbb R^d} d^d \mathbf R \ K(\mathbf R)\exp(-i \mathbf{q} . \mathbf R)$:

- First integral: $$\int_{\mathbb R^d}d^d \mathbf R \ K(\mathbf R) = \int_{\mathbb R^d}d^d \mathbf R \ K(\mathbf R) \ e^{-i \mathbf q. \mathbf R} |_{\mathbf q =0} = \tilde K(\mathbf 0)$$ - Second integral: $$\int_{\mathbb R^d}d^d \mathbf R \ R_i K(\mathbf R) =0$$ Because of the integrand being odd as you mentioned.

- Third integral:
For this one we first note that as you mentioned the integral is zero for all different $i,j$. For $i=j$, first note that: $$\frac{\partial^2}{\partial q_i^2} \int_{\mathbb R^d}d^d \mathbf R \ K(\mathbf R) \ e^{-i \mathbf q. \mathbf R} = \int_{\mathbb R^d}d^d \mathbf R \ (-i)(-i) R_i R_i K(\mathbf R) \ e^{-i \mathbf q. \mathbf R} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ = - \int_{\mathbb R^d}d^d \mathbf R \ R_i^2 K(\mathbf R) \ e^{-i \mathbf q. \mathbf R} $$ Which implies: $$\int_{\mathbb R^d}d^d \mathbf R \ R_i^2 K(\mathbf R)=-\frac{\partial^2}{\partial q_i^2} \int_{\mathbb R^d}d^d \mathbf R \ K(\mathbf R) \ e^{-i \mathbf q. \mathbf R}|_{\mathbf q=0}=-\frac{\partial^2}{\partial q_i^2}\tilde K(\mathbf q) |_{\mathbf q=0} $$ Now if you assume that the coupling is also isotropic, i.e. $\exists \mathcal K : K(\mathbf R) \equiv \mathcal K(|\mathbf R|)$, the Fourier transform of $K$ will become a single variable function, meaning that the third integral is just $-\tilde K''(0)$.

In summary, $\mathcal I$ is: $$\mathcal I \approx \phi(\mathbf r) \tilde K(0) \ - \frac 12\sum_{i=1}^d \partial_i^2 \phi(\mathbf r) \tilde K''(0)$$ Thus, the interaction term in the action is: $$S_I = \int_{\mathbb R^d}d^d \mathbf r \ \phi(\mathbf r) \mathcal I = \int_{\mathbb R^d}d^d \mathbf r \ \phi(\mathbf r)\bigg(\phi(\mathbf r) \tilde K(0) \ - \frac 12\sum_{i=1}^d\partial_i^2 \phi(\mathbf r) \tilde K''(0)\bigg)$$


$$=\tilde K(0)\int_{\mathbb R^d}d^d \mathbf r \ \phi^2(\mathbf r) - \frac {\tilde K''(0)}2\sum_{i=1}^d \int_{\mathbb R^d}d^d \mathbf r \ \phi(\mathbf r) \ \partial_i^2 \phi(\mathbf r) $$ Integrating by parts in the second term results in (boundary terms vanish because $\phi(\mathbf r) \to 0$ as $|\mathbf r| \to \infty$ so that the integrals converge): $$S_I =\tilde K(0)\int_{\mathbb R^d}d^d \mathbf r \ \phi^2(\mathbf r) + \frac {\tilde K''(0)}2\sum_{i=1}^d\int_{\mathbb R^d}d^d \mathbf r \ \partial_i \phi(\mathbf r) \ \partial_i \phi(\mathbf r)$$ $$=\tilde K(0)\int_{\mathbb R^d}d^d \mathbf r \ \phi^2(\mathbf r) + \frac {\tilde K''(0)}2 \int_{\mathbb R^d}d^d \mathbf r \ \sum_{i=1}^d (\partial_i \phi(\mathbf r))^2$$


$$=\int_{\mathbb R^d}d^d \mathbf r \ \bigg( \tilde K(0) \phi^2(\mathbf r) + \frac {\tilde K''(0)}2 \ \big( \partial \phi(\mathbf r) \big)^2 \bigg)$$ Plugging this in the full action finally gives: $$S[\phi] =\int_{\mathbb R^d}d^d \mathbf r \ \bigg( \frac {\tilde K''(0)}8 \ \big( \partial \phi(\mathbf r) \big)^2 + \left(\frac {\tilde K(0)}{4}- \frac 12\right) \phi^2(\mathbf r) + \frac 1{12} \phi^4(\mathbf r) \bigg) $$ Notice that the coefficient of the quadratic term can change sign with temperature (through $\tilde K$), which is a sign of a phase transition.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...