We know the kinematic equation in terms of quaternion is the following:
˙q(t)=12Ω(t)q(t) where q(t) is the unit quaternion. Now if I want to differentiate the above equation w.r.t "t" again:
¨q(t)=12˙Ω(t)q(t)+12Ω(t)˙q(t) where ˙Ω(t)=[0ω3(t)−ω2(t)ω1(t)−ω3(t)0ω1(t)ω2(t)ω2(t)−ω1(t)0ω3(t)−ω1(t)−ω2(t)−ω3(t)0]′=[0α3(t)−α2(t)α1(t)−α3(t)0α1(t)α2(t)α2(t)−α1(t)0α3(t)−α1(t)−α2(t)−α3(t)0]
where α(t) denotes the angular acceleration.
The derivation of the above is one step of my research, just sincerely make sure that if the above makes sense (mathematical and physical). I search a few papers, just by the title of my question; however, I have not seen "one step" of these papers related to the above.
References:
http://www.tu-berlin.de/fileadmin/fg169/miscellaneous/Quaternions.pdf
http://www.euclideanspace.com/physics/kinematics/angularvelocity/QuaternionDifferentiation2.pdf
http://ieeexplore.ieee.org/document/127239/
https://arxiv.org/abs/1510.02224
Actually I am reading a paper related to the soft-landing problem:
http://web.mit.edu/larsb/www/iee_tcst13.pdf
And focus on the state space representation of a system with the state x=[q ˙q]. And include this to a optimization problem.
Hope this will gain a bit physical point of view.
Answer
You can confirm the results by comparing with the standard derivation of angular acceleration using euler angles.
For example if the three rotations have i=1…3:
- Rotation angle θi
- Local Rotation axis zi
- 3×3 elemental rotation matrix is Ri=Rot(zi,θi)
- Total rotation R=R1R2R3
The rotational velocity of the body is
{\boldsymbol \omega} = {\bf z}_1 \dot{\theta}_1 + {\rm R}_1 \left( {\bf z_2} \dot{\theta}_2 + {\rm R}_2 \left( {\bf z}_3 \dot{\theta}_3 \right) \right)
This is defined from \dot{\rm R} = {\boldsymbol \omega} \times {\rm R}
hint at: https://physics.stackexchange.com/a/73969/392
Collect the terms and form using a 3×3 coefficient matrix (called the Jacobian) and the vector of angle speeds.
{\boldsymbol \omega} = \left| \matrix{{\bf z}_1 & {\rm R}_1 {\bf z_2} & {\rm R}_1 {\rm R}_2 {\bf z_3}} \right| \pmatrix{ \dot{\theta}_1 \\\dot{\theta}_2 \\\dot{\theta}_3 }
First derivative
{\rm J} = \left| \matrix{{\bf z}_1 & {\rm R}_1 {\bf z_2} & {\rm R}_1 {\rm R}_2 {\bf z_3}} \right| \pmatrix{ \dot{\theta}_1 \\\dot{\theta}_2 \\\dot{\theta}_3 } = \left({\rm J}^{-1} \right) {\boldsymbol \omega}
NOTE: The 3×3 Jacobian matrix {\rm J} is invertible unless there is gimbal lock condition.
This should be equivalent to
\dot{q} = \frac{1}{2} \Omega q
Second Derivative
\dot{ {\boldsymbol \omega} } = {\rm J} \pmatrix{ \ddot{\theta}_1 \\ \ddot{\theta}_2 \\ \ddot{\theta}_3 } +\dot{\rm J} \pmatrix{ \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 }
Note that \dot{\bf z}_i =0 since the local rotation axes are fixed.
\dot{ {\boldsymbol \omega} } = {\rm J} \pmatrix{ \ddot{\theta}_1 \\ \ddot{\theta}_2 \\ \ddot{\theta}_3 } + \left| \matrix{0 & \dot{\rm R}_1 {\bf z_2} & \left(\dot{\rm R}_1 {\rm R}_2 + {\rm R}_1 \dot{\rm R}_2\right) {\bf z_3}} \right| \pmatrix{ \dot{\theta}_1 \\\dot{\theta}_2 \\\dot{\theta}_3 }
We can expand \dot{\rm R}_1 = \left(\boldsymbol{z}_{1}\dot{\theta}_{1}\right)\times{\rm R}_{1} \dot{\rm R}_2 = \left(\boldsymbol{z}_{2}\dot{\theta}_{2}\right)\times{\rm R}_{2} \dot{\rm R}_1 {\rm R}_2 + {\rm R}_1 \dot{\rm R}_2 = \left(\boldsymbol{z}_{1}\dot{\theta}_{1}+{\rm R}_{1}\boldsymbol{z}_{2}\dot{\theta}_{2}\right)\times{\rm R}_{1}{\rm R}_{2}
\dot{ {\boldsymbol \omega} } = {\rm J} \pmatrix{ \ddot{\theta}_1 \\ \ddot{\theta}_2 \\ \ddot{\theta}_3 } + {\rm K} \pmatrix{ \dot{\theta}_1 \\\dot{\theta}_2 \\\dot{\theta}_3 }
with the non-invertible cross terms matrix {\rm K}=\left| \matrix{0 & \left(\boldsymbol{z}_{1}\dot{\theta}_{1}\right)\times{\rm R}_{1} {\bf z_2} & \left(\boldsymbol{z}_{1}\dot{\theta}_{1}+{\rm R}_{1}\boldsymbol{z}_{2}\dot{\theta}_{2}\right)\times{\rm R}_{1}{\rm R}_{2} {\bf z_3}} \right|
\pmatrix{ \ddot{\theta}_1 \\\ddot{\theta}_2 \\\ddot{\theta}_3 } = {\rm J}^{-1} \left( \dot{ {\boldsymbol \omega} } - {\rm K} \pmatrix{ \dot{\theta}_1 \\\dot{\theta}_2 \\\dot{\theta}_3 } \right)
This should be equivalent to
\ddot{q} = \frac{1}{2} \dot{\Omega} q + \frac{1}{2} \Omega \dot{q}
No comments:
Post a Comment