Thursday 14 November 2019

electromagnetism - Magnetic field due to a single moving charge


The Biot-Savart law can only be used in the case of magnetostatics (constant current) so how do we calculate the magnetic field of a single charge moving at constant velocity at a distance r. I tried by calculating the displacement current using but i was not sure wether the biot savart law can be applied to displacement currents. Please don't use relativity if possible because i have no experience with relativity yet.



Answer




enter image description here


A point charge $\:q\:$ is moving uniformly on a straight line with velocity $\:\boldsymbol{\upsilon}\:$ as is the Figure. The electromagnetic field at a point $\:\mathrm{P}\:$ with position vector $\:\mathbf{x}\:$ at time $\:t\:$ is


\begin{align} \mathbf{E}_{_{\mathbf{LW}}}\left(\mathbf{x},t\right) & \boldsymbol{=}\dfrac{q}{4\pi \epsilon_{\bf 0}}\dfrac{\left(1\!\boldsymbol{-}\!\beta^{\bf 2}\right)}{\left(1\!\boldsymbol{-}\!\beta^{\bf 2}\sin^{\bf 2}\!\phi\right)^{\boldsymbol{3/2}}}\dfrac{\mathbf{{r}}}{\:\:\Vert\mathbf{r}\Vert^{\bf 3}},\quad \beta\boldsymbol{=}\dfrac{\upsilon}{c} \tag{01a}\\ \mathbf{B}_{_{\mathbf{LW}}}\left(\mathbf{x},t\right) & \boldsymbol{=}\dfrac{1}{c^{ \bf 2}}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right)\vphantom{\dfrac{a}{\dfrac{}{}b}}\boldsymbol{=}\dfrac{\mu_{0}q}{4\pi }\dfrac{\left(1\!\boldsymbol{-}\!\beta^{\bf 2}\right)}{\left(1\!\boldsymbol{-}\!\beta^{\bf 2}\sin^{\bf 2}\!\phi\right)^{\boldsymbol{3/2}}}\dfrac{\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{{r}}}{\:\:\Vert\mathbf{r}\Vert^{\bf 3}} \tag{01b} \end{align} Equations (01) are relativistic. They come from the Lienard-Wiechert potentials.




Biot-Savart Law


After a quick calculation with Biot-Savart Law (using the Dirac $\:\delta\:$ function) I found the solution \begin{equation} \mathbf{B}_{_{\mathbf{BS}}}\left(\mathbf{x},t\right) \boldsymbol{=}\dfrac{\mu_{0}q}{4\pi }\dfrac{\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{{r}}}{\:\:\Vert\mathbf{r}\Vert^{\bf 3}} \tag{02} \end{equation} which compared with that from the Lienard-Wiechert potentials, see above equation (01b) \begin{equation} \mathbf{B}_{_{\mathbf{LW}}}\left(\mathbf{x},t\right)\boldsymbol{=}\dfrac{\mu_{0}q}{4\pi }\dfrac{\left(1\!\boldsymbol{-}\!\beta^{\bf 2}\right)}{\left(1\!\boldsymbol{-}\!\beta^{\bf 2}\sin^{\bf 2}\!\phi\right)^{\boldsymbol{3/2}}}\dfrac{\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{{r}}}{\:\:\Vert\mathbf{r}\Vert^{\bf 3}} \tag{03} \end{equation} it looks as an approximation for charges whose velocities are small compared to that of light $\:c$ \begin{equation} \mathbf{B}_{_{\mathbf{BS}}}\left(\mathbf{x},t\right)\boldsymbol{=} \lim_{\beta \boldsymbol{\rightarrow} 0}\mathbf{B}_{_{\mathbf{LW}}}\left(\mathbf{x},t\right)\boldsymbol{=} \lim_{\beta\boldsymbol{\rightarrow} 0}\left[\dfrac{\mu_{0}q}{4\pi }\dfrac{\left(1\!\boldsymbol{-}\!\beta^{\bf 2}\right)}{\left(1\!\boldsymbol{-}\!\beta^{\bf 2}\sin^{\bf 2}\!\phi\right)^{\boldsymbol{3/2}}}\dfrac{\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{{r}}}{\:\:\Vert\mathbf{r}\Vert^{\bf 3}}\right]\boldsymbol{=}\dfrac{\mu_{0}q}{4\pi}\dfrac{\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{{r}}}{\:\:\Vert\mathbf{r}\Vert^{3}} \tag{04} \end{equation}




(1) EDIT Answer to OP's comment :



how did you get equation 02 when v << c. – DHYEY Jun 29 '18 at 11:49




enter image description here


From Jackson's : Biot and Savart Law \begin{equation} \mathrm d\mathbf{B}=\dfrac{\mu_{0}}{4\pi}I\dfrac{\left(\mathrm d\boldsymbol{\ell}\boldsymbol{\times}\mathbf{r'}\right)}{\:\:\Vert\mathbf{r'}\Vert^{3}} \tag{BS-01} \end{equation} \begin{equation} I=q\upsilon\delta\left(x'-r\cos\phi\right), \qquad \mathrm d\boldsymbol{\ell}=\mathbf{i}\mathrm dx', \qquad \mathbf{r'}=x'\mathbf{i}\boldsymbol{+}\alpha\mathbf{j}\boldsymbol{+}0\mathbf{k} \tag{BS-02} \end{equation} \begin{equation} \mathrm d\mathbf{B}=\dfrac{\mu_{0}q}{4\pi}q\upsilon\delta\left(x'\!\boldsymbol{-}\!r\cos\phi\right)\dfrac{\left(\mathbf{i}\boldsymbol{\times}\mathbf{r'}\right)}{\:\:\Vert\mathbf{r'}\Vert^{3}}\mathrm dx'=\dfrac{\mu_{0}q}{4\pi}q\upsilon\delta\left(x'\!\boldsymbol{-}\!r\cos\phi\right)\dfrac{\left(\alpha\mathbf{k}\right)}{\:\:\left(x'^2\!\boldsymbol{+}\!\alpha^2 \right)^{3/2}}\mathrm dx' \tag{BS-03} \end{equation} \begin{equation} \mathbf{B}=\dfrac{\mu_{0}}{4\pi}q\upsilon\alpha\mathbf{k}\int\limits_{\boldsymbol{-}\boldsymbol{\infty}}^{\boldsymbol{+}\boldsymbol{\infty}}\dfrac{\delta\left(x'\!\boldsymbol{-}\!r\cos\phi\right)}{\:\:\left(x'^2\!\boldsymbol{+}\!\alpha^2 \right)^{3/2}}\mathrm dx'=\dfrac{\mu_{0}q}{4\pi}\dfrac{\upsilon\alpha\mathbf{k}}{\:\:\left(r^2\cos^2\phi\!\boldsymbol{+}\!\alpha^2 \right)^{3/2}}= \dfrac{\mu_{0}q}{4\pi}\dfrac{\left(\upsilon\mathbf{i}\right)\boldsymbol{\times}\left(\alpha\mathbf{j}\right)}{\:\:\left(r^2\cos^2\phi\!\boldsymbol{+}\!\alpha^2 \right)^{3/2}} \tag{BS-04} \end{equation} \begin{equation} \mathbf{B} =\dfrac{\mu_{0}q}{4\pi }\dfrac{\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{{r}}}{\:\:\Vert\mathbf{r}\Vert^{3}} \tag{BS-05} \end{equation}


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...