Possible Duplicate:
Linearizing Quantum Operators
I was reading an article on harmonic generation and came across the following way of decomposing the photon field operator. $$ \hat{A}={\langle}\hat{A}{\rangle}I+ \Delta\hat{a}$$
The right hand side is a sum of the "mean" value and the fluctuations about the mean. While I understand that the physical picture is reasonable, is this mathematically correct? If so what are the constraints this imposes? In literature this is designated as a "linearization" process.
My understanding of a linear operator is that it is simply a homomorphism. I have never seen anything done like this and I'm having a hard time finding references which justify this process.
I would be grateful if somebody can point me in the right direction!
Answer
The operation you mentioned $$\Delta \hat{a} = \hat{A}-\langle \hat{A}\rangle \hat{I}$$ is just shifting of the annihilation operator. Typically people even drop the identity and write $$\hat{a}_{new}=\hat{a}_{old}-\alpha_0,$$ where $\alpha_0$ is a complex number. In your question the shift is such that $\langle \hat{a}_{new} \rangle = 0$, which may be convenient for calculations. In particular when the pump beam has many photons, the quantum part (i.e. related to $\hat{a}_{new}$) may be neglected.
Additionally, $\hat{a}_{new}$ is an annihilation operator with the same anti-commutation relations as $\hat{a}_{old}$.
From mathematical point of view it is a perfectly legit operation. Moreover, both operators have the same domain, and spectrum only shifted by $\alpha_0$. To see that domain is the same take any $|\psi\rangle \in \text{dom}(\hat{a}_{old})$. Then denoting $|\phi\rangle := \hat{a}_{old} |\psi\rangle$, we check that $\hat{a}_{new} |\psi\rangle = |\phi\rangle-\alpha_0|\psi\rangle$ is a well-defined vector.
No comments:
Post a Comment