Sunday 24 November 2019

quantum mechanics - Action of Parity operator on Impulse representation


Is my derivation of the action of the parity operator $\mathbb{P}$ on the $|p\rangle$ representation correct?


$$\left( \mathbb{P}\tilde\psi \right)(p)= - \tilde\psi (p).$$


Obtained from



$$\left( \mathbb{P}\tilde\psi \right)(p) = \frac{1}{\sqrt{2\pi\hbar}}\int_{-\infty}^{\infty} dx \, e^{-\frac{i}{\hbar}px}(\mathbb{P}\psi)(x)= $$


$$ = \frac{1}{\sqrt{2\pi\hbar}}\int_{-\infty}^{\infty} dx \, e^{-\frac{i}{\hbar}px}\psi(-x)=$$


$$= -\frac{1}{\sqrt{2\pi\hbar}}\int_{\infty}^{-\infty} dx \, e^{-\frac{i}{\hbar}(-p)x}\psi(x)=-\tilde\psi(p).$$


$$= \frac{1}{\sqrt{2\pi\hbar}}\int_{-\infty}^{\infty} dx \, e^{-\frac{i}{\hbar}(-p)x}\psi(x)=\tilde\psi(-p).$$




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...