I'm trying to find [Mi,Mj] Poisson brackets.
{Mi,Mj}=∑l(∂Mi∂ql∂Mj∂pl−∂Mi∂pl∂Mj∂ql)
I know that:
Mi=ϵijkqjpk
Mj=ϵjnmqnpm
and so:
[Mi,Mj]=∑l(∂ϵijkqjpk∂ql∂ϵjnmqnpm∂pl−∂ϵijkqjpk∂pl∂ϵjnmqnpm∂ql)
=∑lϵijkpkδjl⋅ϵjnmqnδml−∑lϵijkqjδkl⋅ϵjnmpmδnl
Then I have thought that values that nullify deltas don't add any informations in the summations. And so, m=l,j=l but so I obtain m=j. But if m=l, the second Levi-Civita symbol in the first summation is zero... And if I go on, I obtain {Mi,Mj}=−piqj instead of {Mi,Mj}=qipj−piqj
Where am I wrong? Could you give me some hints to continue?
Answer
You are confusing in the index, such calculations must be carried out very carefully. I would start with your difention. Mi=ϵijkqjpk
Mp=ϵpnmqnpm
First term
=ϵijkpkδjlϵpnmqnδml=ϵilkpkϵpnlqn=(−1)ϵlikpk(−1)2ϵlpnqn=−ϵlikpkϵlpnqn=−(δipδkn−δinδkp)pkqn
Here I used the antisymmetry of ϵlik and equation ϵijkϵimn=δjmδkn−δjnδkm
Second term
Absolutely the same calculations. =ϵijkqjδklϵpnmpmδnl=ϵijlqjϵplmpm=ϵplmpmϵijlqj=−ϵlpmpmϵlijqj=−(δpiδmj−δpjδmi)pmqj=
Make the change m=k,j=n. Then
=−(δpiδkn−δpnδki)pkqn
All together
{Mi,Mp}=−(δipδkn−δinδkp)pkqn+(δpiδkn−δpnδki)pkqn=δinδkppkqn−δpnδkipkqn=ppqi−piqp=qipp−piqp
No comments:
Post a Comment