Thursday 27 August 2015

homework and exercises - Poisson brackets and angular momentum


I'm trying to find $[M_i, M_j]$ Poisson brackets.


$$\{M_i, M_j\}=\sum_l \left(\frac{\partial M_i}{\partial q_l}\frac{\partial M_j}{\partial p_l}-\frac{\partial M_i}{\partial p_l}\frac{\partial M_j}{\partial q_l}\right)$$


I know that:


$$M_i=\epsilon _{ijk} q_j p_k$$


$$M_j=\epsilon _{jnm} q_n p_m$$


and so:


$$[M_i, M_j]=\sum_l \left(\frac{\partial \epsilon _{ijk} q_j p_k}{\partial q_l}\frac{\partial \epsilon _{jnm} q_n p_m}{\partial p_l}-\frac{\partial \epsilon _{ijk} q_j p_k}{\partial p_l}\frac{\partial \epsilon _{jnm} q_n p_m}{\partial q_l}\right)$$



$$= \sum_l \epsilon _{ijk} p_k \delta_{jl} \cdot \epsilon_{jnm} q_n \delta_{ml}- \sum_l \epsilon_{ijk}q_j \delta_{kl} \cdot \epsilon_{jnm} p_m \delta_{nl}$$


Then I have thought that values that nullify deltas don't add any informations in the summations. And so, $m=l, j=l$ but so I obtain $m=j$. But if $m=l$, the second Levi-Civita symbol in the first summation is zero... And if I go on, I obtain $\{M_i, M_j\}=-p_iq_j$ instead of $\{M_i, M_j\}=q_ip_j-p_iq_j$


Where am I wrong? Could you give me some hints to continue?



Answer



You are confusing in the index, such calculations must be carried out very carefully. I would start with your difention. $$M_i=\epsilon _{ijk} q_j p_k$$


$$M_p=\epsilon _{pnm} q_n p_m$$ $$\{M_i, M_p\}=\sum_l \left(\frac{\partial M_i}{\partial q_l}\frac{\partial M_p}{\partial p_l}-\frac{\partial M_i}{\partial p_l}\frac{\partial M_p}{\partial q_l}\right)$$


First term


$=\epsilon _{ijk}p_k\delta_{jl}\epsilon _{pnm}q_n\delta_{ml}=\epsilon _{ilk}p_k\epsilon _{pnl}q_n=(-1)\epsilon _{lik}p_k(-1)^2\epsilon _{lpn}q_n=-\epsilon _{lik}p_k\epsilon _{lpn}q_n=-\left(\delta_{ip}\delta_{kn}-\delta_{in}\delta_{kp}\right)p_kq_n$


Here I used the antisymmetry of $\epsilon _{lik}$ and equation $\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}$


Second term



Absolutely the same calculations. $=\epsilon _{ijk}q_j\delta_{kl}\epsilon _{pnm}p_m\delta_{nl}=\epsilon _{ijl}q_j\epsilon _{plm}p_m=\epsilon _{plm}p_m\epsilon _{ijl}q_j=-\epsilon _{lpm}p_m\epsilon _{lij}q_j=-\left(\delta_{pi}\delta_{mj}-\delta_{pj}\delta_{mi}\right)p_mq_j=$


Make the change $m=k,j=n$. Then


$=-\left(\delta_{pi}\delta_{kn}-\delta_{pn}\delta_{ki}\right)p_kq_n$


All together


$\{M_i, M_p\}=-\left(\delta_{ip}\delta_{kn}-\delta_{in}\delta_{kp}\right)p_kq_n+\left(\delta_{pi}\delta_{kn}-\delta_{pn}\delta_{ki}\right)p_kq_n=\delta_{in}\delta_{kp}p_kq_n-\delta_{pn}\delta_{ki}p_kq_n=p_pq_i-p_iq_p=q_ip_p-p_iq_p$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...