In a gauge theory like QED a gauge transformation transforms one mathematical representation of a physical system to another mathematical representation of the same system, where the two mathematical representations don't differ at all with respect to observables. Gauge transformations are therefore manifestations of a true redundandcy of the mathematical descriptions.
In GR the role of diffeomorphisms is different, a diffeomorphism represents a change of the reference frame. Different observers in different reference frames will of course have different results when they measure the same observable/event. In this sense I agree with Raymond Streater (see Diff(M)) that it is misleading to say that Diff(M) is a gauge group (if you disagree with me please explain).
In AQFT one associates observables (selfadjoint operators) with bounded open subsets of a spacetime, these observables represent what is observable in the given domain of space and time. A detector that is operated for two hours in a laboratory would be, for example, represented by such an observable (this is only approximately true, because the Reeh-Schlieder theorem says that it is not possible to use a truly localized observable, but one has to use an "approximately local observable" instead).
I think that this line of reasoning will stay true even if one day there is a theory of quantum gravitation. But from time to time I read statements like "local observables are not gauge invariant in a theory with (quantum) gravity and therefore cannot exist/ are not valid observables". (If my phrasing of the statement is wrong, please explain and correct it.)
I have never read about an explanation of this statement and would like to hear about one. Isn't a detector, for example, a (approximatly) local observable and won't detectors exist within a theoretical framework of (quantum) gravity?
Edit: A little of explanation of "observables" in GR: I am aware that in GR only "events" make sense as an observable, but of course not, for example, the spacetime coordinates of a point of spacetime, see the discussion of Einstein's hole argument on the nLab:
- spacetime, see paragraph "Einstein's hole argument".
When a detector detects a particle, I assume that this is an event that is observable because it is defined by the proximity of a localized field excitation and the detector, and the fact that the detecter makes "ping" is a fact that all observers in all reference frames agree upon.
No comments:
Post a Comment