If an object is, say, 100 cm. from a wall, and I move the object halfway to the wall and stop, then the distance is reduced to 50 cm. If I continually move the object by one half of the remaining distance and stop, and keep repeating this procedure, why is it that the object eventually makes contact with the wall (on a macroscopic level at least), considering that no matter how infinitely small the remaining distance is, I can theoretically cut that distance by half, and thus never reach the wall. Does the Planck distance, the theoretically smallest unit of distance, have anything to do with this? And if so, how does any object get "around" that infinitely small Planck distance in order to move at all?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form ψ=Ae−βr with $A = \frac{\bet...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
Small vessels generally lean into a turn, whereas big vessels lean out. Why do ships lean to the outside, but boats lean to the inside of a ...
-
I'm sitting in a room next to some totally unopened cans of carbonated soft drinks (if it matters — the two affected cans are Coke Zero...
-
What exactly are the spikes, or peaks and valleys, caused by in pictures such as these Wikipedia states that "From the point of view of...
No comments:
Post a Comment