Saturday 22 August 2015

mathematics - Use 2, 0, 1 and 8 to make 109


Assemble a formula using the numbers $2$, $0$, $1$, and $8$ in any order that equals 109. You may use the operations $x + y$, $x - y$, $x \times y$, $x \div y$, $x!$, $\sqrt{x}$, $\sqrt[\leftroot{-2}\uproot{2}x]{y}$ and $x^y$, as long as all operands are either $2$, $0$, $1$, or $8$. Operands may of course also be derived from calculations e.g. $10+(\sqrt{8*2})!$. You may also use brackets to clarify order of operations, and you may concatenate two or more of the four digits you start with (such as $2$ and $8$ to make the number $28$) if you wish. You may only use each of the starting digits once and you must use all four of them. I'm afraid that concatenation of numbers from calculations is not permitted, but answers with concatenations which get $109$ will get plus one from me.


Double, triple, etc. factorials (n-druple-factorials), such as $4!! = 4 \times 2$ are not allowed, but factorials of factorials are fine, such as $(4!)! = 24!$. I will upvote answers with double, triple and n-druple-factorials which get 109, but will not mark them as correct.


Here are some examples to this problem:



many thanks to the authors of these questions for inspiring this question.



Answer



I think...



$\sqrt{\frac{12!}{8!} + 0!} = \sqrt{11881} = 109$




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...