Wednesday, 17 February 2016

Commutator of scalar fields


So, in the calculation of $ D(t,r) = \left[ \phi(x) , \phi(y) \right] $, where $ t= x^0 - y^0,~ \vec{r} = \vec{x} - \vec{y} $ you need to calculate the following integral $$ D(t,r) = \frac{1}{2\pi^2 r} \int\limits_0^\infty dp \frac{ p \sin(p r) \sin \left[(p^2 + m^2)^{1/2} t \right]} { (p^2 + m^2 )^{1/2}} $$ For $m=0$, the integral is simple. We get $$ D(t,r) = \frac{1}{4\pi r} \left[ \delta(t - r) - \delta(t + r) \right] $$ I even know what the answer for $ m \neq 0 $. I have no idea how to calculate it though. Any help?



Answer



Using Gradshteyn and Ryzhik (seventh edition) 3.876 (1) $$\int_0^\infty \frac{\sin{(p \sqrt{x^2+a^2})}}{\sqrt{x^2+a^2}} \cos(b~x)dx=\frac{\pi}{2} J_0(a\sqrt{p^2-b^2}) ~~[0

No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...