Sunday, 8 July 2018

resource recommendations - Crash course on algebraic geometry with view to applications in physics



Could you please recommend any good texts on algebraic geometry (just over the complex numbers rather than arbitrary fields) and on complex geometry including Kahler manifolds that could serve as an informal introduction to the subject for a theoretical physicist (having in mind the applications in physics, e.g. in the string theory)?


What I want for a moment is to get some informal picture of the subject rather than being dug up into the gory details of the proofs and lost in higher and higher layers of abstraction of commutative algebra and category theory. The texts I have found so far are all rather dry and almost completely lack this informal streak, and all of them are geared towards pure mathematicians, so if there exists something like "Algebraic geometry for physicists" and "Kahler manifolds for physicists" (of course, they would probably have different titles :)), I would greatly appreciate the relevant references.




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...