Wednesday 7 August 2019

mathematical physics - Does it make sense to speak in a total derivative of a functional? Part II



I am trying to derive the Noether theorem from the following integral action: \begin{equation} S=\int_{\mathbb{\Omega}}d^{D}x~\mathcal{L}\left( \phi_{r},\partial_{\nu}% \phi_{r},x\right) , \tag{II.1}\label{eq1}% \end{equation} where $\phi_{r}\equiv\phi_{r}\left( x\right) $ represents the $r$-th field of set $\left\{ \phi_{r}\right\} $, while $\partial_{\nu}\phi_{r}\equiv \partial\phi_{r}/\partial x^{\nu}$ represents its fisrt partial derivatives. The functional $\mathcal{L}\left( \phi_{r},\partial_{\nu}\phi_{r},x\right) $ is the Lagrangian density of the theory and has, as usual, energy density dimension, whereas $d^{D}x$ is the volume element of $D$-dimensional spacetime. For simplicity, we have represented by the dependence of the spacetime coordinates by $x$, such that $x \equiv x^{\mu}$.


I have assumed that the total variation occurs under the following coordinate transformation \begin{equation} x^{\prime\mu}=f^{\mu}\left( \varepsilon,x^{\nu}\right) , \tag{II.2}\label{eq2}% \end{equation} where $\varepsilon$ is a paramenter responsible for variation. Naturaly, which if $\varepsilon=0$, so \begin{equation} x^{\mu}=f^{\mu}\left( 0,x^{\nu}\right) . \tag{II.3}% \end{equation}


If the parameter $\varepsilon$ is sufficiently small, it is possible to use a Taylor expansion to rewrite the expression (\ref{eq2}) as \begin{equation} x^{\prime\mu}\approx x^{\mu}+\varepsilon\xi^{\mu}\left( x\right) , \tag{II.4}\label{eq4}% \end{equation} where only the terms of the first order in $\varepsilon$ are considered. $\xi^{\mu}\left( x\right) $ It is a field vector, contravariant, which in general can be defined by \begin{equation} \xi^{\mu}\left( x\right) =\dfrac{\partial x^{\prime\mu}}{\partial \varepsilon}\rule[-0.35cm]{0.02cm}{0.9cm}_{\varepsilon=0}.\tag{II.5}% \end{equation} In the literature, it is common to denote $\varepsilon\xi^{\mu}$ by $\delta{x^{\mu}}$, i.e., $\varepsilon\xi^{\mu}\equiv\delta{x^{\mu}}$.


At this point, I will denote the integral action (\ref{eq1}) in terms of the prime coordinates, such that, \begin{equation} S^{\prime}=\int_{\mathbb{\Omega}^{\prime}}d^{D}x^{\prime}~\mathcal{L}\left( \phi_{r}^{\prime},\partial_{\nu}^{\prime}\phi_{r}^{\prime},x^{\prime}\right) \text{.} \tag{II.6}\label{eq6}% \end{equation}


As it is known, the volume element in the coordinates prime is connected to the volume element of the nonprime coordinates by means of the following expression \begin{equation} d^{D}x^{\prime}=\left\vert \dfrac{\partial x^{\prime}}{\partial x}\right\vert d^{D}x,\tag{II.7}\label{eq7}% \end{equation} where the Jacobian $\left\vert \dfrac{\partial x^{\prime}}{\partial x}\right\vert $ can be calculated by the following expression \begin{equation} \left\vert \dfrac{\partial x^{\prime}}{\partial x}\right\vert =\dfrac{\left( -1\right) ^{s}}{D!}\epsilon_{\alpha_{1}\alpha_{2}\cdots\alpha_{D-1}\alpha _{D}}\epsilon^{\beta_{1}\beta_{2}\cdots\beta_{D-1}\beta_{D}}\dfrac{\partial x^{\prime\alpha_{1}}}{\partial x^{\beta_{1}}}\dfrac{\partial x^{\prime \alpha_{2}}}{\partial x^{\beta_{2}}}\cdots\dfrac{\partial x^{\prime \alpha_{D-1}}}{\partial x^{\beta_{D-1}}}\dfrac{\partial x^{\prime\alpha_{D}}% }{\partial x^{\beta_{D}}}.\tag{II.8}\label{eq8}% \end{equation} Here, the parameter $s$ corresponds to the number of negative eigenvalues of the metric.


To follow, we must then take the partial derivatives of Eq. (\ref{eq4}), which leads us to: \begin{equation} \dfrac{\partial x^{\prime\alpha_{i}}}{\partial x^{\beta_{i}}}\approx \delta_{\beta_{i}}^{\alpha_{i}}+\varepsilon\partial_{\beta_{i}}\xi^{\alpha _{i}}.\tag{II.9}\label{eq9}% \end{equation} Substituting (\ref{eq9}) into (\ref{eq8}), we have found, after laborious calculations, that \begin{multline} \left\vert \dfrac{\partial x^{\prime}}{\partial x}\right\vert \approx\left( -1\right) ^{s}\left[ \dfrac{1}{D!}\epsilon_{\alpha_{1}\alpha_{2}\cdots \alpha_{D-1}\alpha_{D}}\epsilon^{\alpha_{1}\alpha_{2}\cdots\alpha_{D-1}% \alpha_{D}}\right.\\ \left.+\dfrac{1}{\left( D-1\right) !}\varepsilon\epsilon_{\alpha _{1}\alpha_{2}\cdots\alpha_{D-1}\alpha_{D}}\epsilon^{\alpha_{1}\alpha _{2}\cdots\alpha_{D-1}\beta_{D}}\partial_{\beta_{D}}\xi^{\alpha_{D}}\right] \tag{II.10}\label{eq10}% \end{multline} Using relations \begin{equation} \epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}\cdots\alpha_{D-1}\alpha_{D}}% \epsilon^{\beta_{1}\alpha_{2}\alpha_{3}\cdots\alpha_{D-1}\alpha_{D}}=\left( -1\right) ^{s}\left( D-1\right) !\delta_{\alpha_{1}}^{\beta_{1}}% ,\tag{II.11}\label{eq11}% \end{equation} and \begin{equation} \epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}\cdots\alpha_{D-1}\alpha_{D}}% \epsilon^{\alpha_{1}\alpha_{2}\alpha_{3}\cdots\alpha_{D-1}\alpha_{D}}=\left( -1\right) ^{s}D!,\tag{II.12}\label{eq12}% \end{equation} we can show, without much difficulty, that: \begin{equation} \left\vert \dfrac{\partial x^{\prime}}{\partial x}\right\vert =\left( -1\right) ^{2s}\left( 1+\varepsilon\partial_{\alpha_{D}}\xi^{\alpha_{D}% }\right) .\tag{II.13}\label{eq13}% \end{equation} Now, whatever the value of $s$, $\left( -1\right) ^{2s}=+1$, and so that, we have that the volume elements are relationship by: \begin{equation} d^{D}x^{\prime}=\left( 1+\varepsilon\partial_{\alpha}\xi^{\alpha}\right) d^{D}x.\tag{II.14}\label{eq14}% \end{equation}


Now, returning Eq. (\ref{eq6}) and making use of Eq. (\ref{eq14}), we have:%


\begin{equation} S^{\prime}=\int_{\mathbb{\Omega}}d^{D}x~\mathcal{L}\left( \phi_{r}^{\prime },\partial_{\nu}^{\prime}\phi_{r}^{\prime},x^{\prime}\right) +\varepsilon \int_{\mathbb{\Omega}}d^{D}x~\mathcal{L}\left( \phi_{r}^{\prime}% ,\partial_{\nu}^{\prime}\phi_{r}^{\prime},x^{\prime}\right) \partial_{\alpha }\xi^{\alpha}.\tag{II.15}\label{eq15}% \end{equation}


To follow, we make use of Taylor's expansion to write \begin{equation} \phi_{r}^{\prime}\left( x^{\prime}\right) =\phi_{r}^{\prime}\left( x+\varepsilon\xi\right) \approx\phi_{r}^{\prime}\left( x\right) +\varepsilon\xi^{\mu}\left( x\right) \partial_{\mu}\phi_{r}^{\prime}\left( x\right) .\tag{II.16}\label{eq16}% \end{equation} We now denote the functional variation of the $\phi_{r}$ field at the same point in space-time by \begin{equation} \phi_{r}^{\prime}\left( x\right) =\phi_{r}\left( x\right) +\varepsilon \zeta_{r}\left( x\right) .\tag{II.17}\label{eq17}% \end{equation} Here, we point out that it is usual in the literature to identify $\varepsilon\zeta_{r}\left( x\right) $ with $\delta{\phi}$, i.e., $\varepsilon\zeta_{r}\left( x\right) \equiv\delta{\phi\big(x\big)}$. Substituting (\ref{eq17}) into (\ref{eq16}), we have: \begin{equation} \phi_{r}^{\prime}\left( x^{\prime}\right) \approx\phi_{r}\left( x\right) +\varepsilon\left[ \zeta_{r}\left( x\right) +\xi^{\mu}\left( x\right) \partial_{\mu}\phi_{r}\left( x\right) \right] ,\tag{II.18}\label{eq18}% \end{equation} where we can identity the total variation of the $\phi$ by \begin{equation} \zeta_{r}\left( x\right) +\xi^{\mu}\left( x\right) \partial_{\mu}\phi _{r}\left( x\right) =\frac{\tilde{\delta}{\phi}}{\varepsilon}.\tag{II.19}% \label{eq19}% \end{equation} Similarly, knowing that \begin{equation} \partial_{\nu}^{\prime}=\left[ \delta_{\nu}^{\rho}-\varepsilon\partial_{\nu }\xi^{\rho}\left( x\right) \right] \partial_{\rho},\tag{II.20}\label{eq20}% \end{equation} we can show that \begin{equation} \partial_{\nu}^{\prime}\phi_{r}^{\prime}\left( x^{\prime}\right) \approx\partial_{\nu}\phi_{r}\left( x\right) +\varepsilon\partial_{\nu}% \zeta_{r}\left( x\right) +\varepsilon\xi^{\mu}\left( x\right) \partial_{\nu}\partial_{\mu}\phi_{r}\left( x\right) .\tag{II.21}\label{eq21}% \end{equation} Now, from of the Eq.(\ref{eq4}), (\ref{eq18}) and (\ref{eq21}), we can, by means of Taylor expansion, to write \begin{equation} \mathcal{L}\left( \phi_{r}^{\prime},\partial_{\nu}^{\prime}\phi_{r}^{\prime },x^{\prime}\right) =\mathcal{L}\left( \phi_{r}+\varepsilon\left( \zeta _{r}+\xi^{\mu}\partial_{\mu}\phi_{r}\right) ,\partial_{\nu}\phi _{r}+\varepsilon\left( \partial_{\nu}\zeta_{r}+\xi^{\mu}\partial_{\nu }\partial_{\mu}\phi_{r}\right) ,x+\varepsilon\xi\right) ,\tag{II.22}% \label{eq22}% \end{equation} \begin{multline} \mathcal{L}\left(\phi_{r}^{\prime},\partial_{\nu}^{\prime}\phi_{r}^{\prime },x^{\prime}\right) \approx \mathcal{L}\left(\phi_{r},\partial_{\nu}\phi _{r},x\right) + \varepsilon\dfrac{\partial\mathcal{L}}{\partial\phi_{r}}\left( \zeta_{r} + \xi^{\mu}\partial_{\mu}\phi_{r}\right) \\ + \varepsilon \dfrac{\partial\mathcal{L}}{\partial\partial_{\nu}\phi_{r}}\left( \partial_{\nu}\zeta_{r}+\xi^{\mu}\partial_{\mu}\partial_{\nu}\phi_{r}\right) +\varepsilon\partial_{\mu}\mathcal{L}\xi^{\mu}.\tag{II.23}\label{eq23}% \end{multline} We now use (\ref{eq23}) in (\ref{eq15}) and after some development, we get \begin{multline} \dfrac{S^{\prime}-S}{\varepsilon} \approx \int_{\mathbb{\Omega}}d^{D}x~\left\{ \dfrac{\partial\mathcal{L}}{\partial\phi_{r}}\zeta_{r} + \dfrac{\partial \mathcal{L}}{\partial\partial_{\nu}\phi_{r}}\partial_{\nu}\zeta_{r}\right. \\ \left. + \xi^{\mu }\left( \dfrac{\partial\mathcal{L}}{\partial\phi_{r}}\partial_{\mu}\phi _{r}+\dfrac{\partial\mathcal{L}}{\partial\partial_{\nu}\phi_{r}}\partial_{\mu }\partial_{\nu}\phi_{r}+\partial_{\mu}\mathcal{L}\right) +\partial_{\mu}% \xi^{\mu}\mathcal{L}\right\}.\tag{II.24}\label{eq24}% \end{multline} This is where my doubt lies! The first two terms lead to the Euler-Lagrange equation plus a term of total divergence. The other terms must be written in the form of a total divergence that will also "absolve" the divergence term that comes from the Euler-Lagrange equation. The term in parentheses suggests that we may write that term as a total derivative in relation to L. However, I am not sure that this is correct. Such doubt motivated the exposition and inquiries exposed in the post: Does it make sense to speak in a total derivative of a functional? Part I.



Answer






  1. The parameter $s$ below eq. (\ref{eq8}) is non-standard. Noether's theorem and its Lagrangian formalism do in general not rely on a metric. Nevertheless, we only need eq. (\ref{eq14}), which is indeed correct.




  2. Note that the so-called vertical generator $\zeta_{r}\left( \phi_{r}(x),\partial\phi_{r}(x),x\right)$ in eq. (\ref{eq17}) depends on the field and derivatives thereof in important applications, not just $x$. (For a simple example from point mechanics, see e.g. this Phys.SE post.)




  3. The partial derivative $\partial_{\nu}\zeta_{r}$ in the main eq. (\ref{eq24}) should actually be a total derivative $d_{\nu}\zeta_{r}$. Then the main eq. (\ref{eq24}) leads to Noether's theorem by standard arguments. In particular, the parenthesis $(\ldots)$ in eq. (\ref{eq24}) is indeed the total spacetime derivative $d_{\mu}{\cal L}\equiv \frac{d {\cal L}}{dx^{\mu}}$, cf. OP's question.





No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...