Thursday, 12 December 2019

condensed matter - Is the $SU(2)$ flux defined in the context of Projective Symmetry Group(PSG) an observable quantity?


The $SU(2)$ flux defined in the context of PSG is as follows:


Consider the mean-field Hamiltonian $H_{MF}=\sum(\psi_i^\dagger\chi_{ij}\psi_j+H.c.)$ description of a 2D lattice spin-model, the definition of $SU(2)$ flux $P_C$ for a loop $C=i\rightarrow j_1\rightarrow j_2\rightarrow ...\rightarrow j_n\rightarrow i$ with the base point $i$ is $P_C=\chi_{ij_1}\chi_{j_1j_2}...\chi_{j_ni}$. On the other hand, the two $SU(2)$ gauge-equivalent mean-field ansatz $\chi_{ij}$ and $\chi_{ij}'=G_i\chi_{ij}G_j^\dagger$ describe the same projected spin-wavefunction. And the $SU(2)$ flux $P_C'$ for the same loop $C$ is given by $P_C'=\chi_{ij_1}'\chi_{j_1j_2}'...\chi_{j_ni}'=G_iP_CG_i^\dagger$, in general $P_C' \neq P_C$, but an observable quantity should be invariant under the $SU(2)$ gauge transformation $\chi_{ij}\rightarrow\chi_{ij}'=G_i\chi_{ij}G_j^\dagger$,. Thus, does this mean that the $SU(2)$ flux $P_C$ is not an observable quantity?


Thanks in advance.




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...