Tuesday 31 December 2019

newtonian mechanics - Gravitational potential energy of mass between two planets


Suppose I want to launch a rocket from earth to some point $O$ between the center of earth and the center of moon (on a straight line connecting their centers), where the gravitational force of the moon 'cancels out' the gravitational force of the earth (this point is located at $\approx 54 R_E$ from the center of earth where $R_E$ is the radius of earth). I want to know how much energy I should spend in order for the rocket to get there (neglecting the atmosphere and the rotation of the earth around its axis). So, I know that this is basically the difference between the potential energy at the start point and at the end point of the destination. However, $O$ is located not only in the gravitational field of the earth, but also in the gravitational field of the moon. And it seems that I cannot neglect the gravitational potential energy of the body at the moon's gravitational field. So my question is - how can I combine these two? How can I calculate the total GPE of the body in two (or even more) intersecting gravitational fields?



Answer



Gravitational Potential is a scalar quantity so can be added algebraically directly for both(or more) bodies.


Also GPE is just Gravitational potential times mass. $$E=\underbrace{\big(\sum P\big)}_{\text{due to all bodies in vicinity}}\times m$$



Now , rest of your aproach is allright ! Continue using this.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...