Saturday, 21 December 2019

quantum mechanics - 7/2 versus 9/2 for diatomic heat capacity


Question



I calculated the classical heat capacity of a diatomic gas as CV=(9/2)NkB, however the accepted value is CV=(7/2)NkB.


I assumed the classical Hamiltonian of two identical atoms bound together as H=12m(|ˉp2|2+|ˉp2|2)+α2|ˉq1ˉq2|2. I calculated the partition function of N particles as Z=( I calcuated the heat capacity as C_V = \dfrac{\partial }{\partial T} \left( k_B T^2 \dfrac{\partial \ln(Z)}{\partial T} \right) = \dfrac{9}{2}k_BN.


Why does the classical argument fail?


Classical Derivation


The partition function is \begin{align} Z &=& \left( \frac{1}{h^6} \int \mathrm{e}^{- \beta H(\bar{q}_1,\bar{q}_2,\bar{p}_1,\bar{p}_2)} ~d^{3}q_1 ~d^{3}q_2 ~d^{3}p_1 ~d^{3}p_2 \right)^N \\&=& \left( \frac{1}{h^6} \int \mathrm{e}^{- \beta ((|\bar{p}_1|^2+|\bar{p}_2|^2)/(2m)+\alpha |\bar{q}_1-\bar{q}_2|^2/2)} ~d^{3}q_1 ~d^{3}q_2 ~d^{3}p_1 ~d^{3}p_2 \right)^N \end{align} A useful gaussian integral \begin{align} \int_{-\infty}^{\infty} e^{-\gamma (x-x_0)^2}dx = \sqrt{\dfrac{\pi}{\gamma}} \end{align} The partition function can be evaluated using separated integrals \begin{align} \iiint_{-\infty}^{\infty} \mathrm{e}^{- \beta |\bar{p}_1|^2} ~d^{3}p_1 = \iiint_{-\infty}^{\infty} \mathrm{e}^{- \beta |\bar{p}_2|^2} ~d^{3}p_2 = \left(\sqrt{\dfrac{\pi}{\beta}}\right)^3 \end{align} and \begin{align} \iiint_{-\infty}^{\infty} \iiint_{-\infty}^{\infty} \mathrm{e}^{- \beta \alpha |\bar{q}_1-\bar{q}_2|^2/2 } ~d^{3}q_1 ~d^{3}q_2 = \left( \sqrt{\dfrac{\pi}{\beta \alpha/2}} \right)^3 \iiint_{-\infty}^{\infty} ~d^{3}q_1 = \left( \sqrt{\dfrac{\pi}{\beta \alpha/2}} \right)^3 V \end{align} The last set of integrals are improper integrals. One has to take the limit as the space approaches infinite containment. In that limit, integrating one set of variables d^3q_2 approaches the limit of a finite Gaussian term, while the other d^3q_1 approaches the diverging value of the total volume of the gas.


The partition function is \begin{align} Z &=& \left( h^{-6} \left(\sqrt{\dfrac{\pi}{\beta}}\right)^3 \left(\sqrt{\dfrac{\pi}{\beta}}\right)^3 \left( \sqrt{\dfrac{\pi}{\beta \alpha/2}} \right)^3 V \right)^N \\&=& \left( h^{-6} \left(k_B T \pi\right)^{9/2} \left( \dfrac{2}{\alpha} \right)^{3/2} V \right)^N \\&=& \left( h^{-6} \left(k_B \pi\right)^{9/2} \left( \dfrac{2}{\alpha} \right)^{3/2} \right)^N V^N T^{9N/2} \end{align}




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...