Thursday, 27 November 2014

electromagnetism - The definition of the Lorenz gauge condition


The inner product of two vectors in space-time is:


$$(x_1, y_1, z_1, t_1) \cdot (x_2, y_2, z_2, t_2) = x_1 x_2 + y_1 y_2 + z_1 z_2 - t_1 t_2$$


So


$$(\frac{\partial }{\partial x}, \frac{\partial }{\partial y}, \frac{\partial }{\partial z}, \frac 1c \frac{\partial }{\partial t}) \cdot (A_1, A_2, A_3, \phi) = \text{div}(\vec A) - \frac 1c \frac{\partial \phi}{\partial t}$$


is Lorentz invariant, where $\vec A=(A_1, A_2, A_3)$. But the [Lorenz gauge condition] (https://en.wikipedia.org/wiki/Lorenz_gauge_condition) is defined by $\text{div}(\vec A) + 1/c\ \partial_t \phi=0$. Why has the minus changed into plus? So there is apparently no longer invariance.




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...