Wednesday, 19 November 2014

particle physics - How to understand the makeup of neutral pi and eta mesons?


I know that mesons are bosons made up of quark-antiquark pairs. But when I see the list of mesons, I can see that the makeup of neutral pions and eta mesons are noted in a strange way.


$$\pi^0=(u\bar{u}-d\bar{d})/\sqrt{2}$$


$$\eta^0=(u\bar{u}+d\bar{d}-2s\bar{s})/\sqrt{6}$$


How am I supposed to understand their compositions?


Interpretation 1: a neutral pion should be understand as a quantum superposition and is actually composed of 2 pairs, sometimes appearing as an up pair, some other times as a down pair.


Interpretation 2: a neutral pion can be an up pair or a down pair. Both compositions lead to mesons with the exact same characteristics and behaviours.


What is the meaning of those square roots? If it's too complicated to be explained within a few lines, can anyone recommend me a website or a book?



Answer



enter image description here



Note that in the 3-dimensional complex space spanned by basis $\boldsymbol{\lbrace}\boldsymbol{u}\overline{\boldsymbol{u}},\boldsymbol{d}\overline{\boldsymbol{d}},\boldsymbol{s}\overline{\boldsymbol{s}}\boldsymbol{\rbrace}$, this basis is replaced by $\boldsymbol{\lbrace}\boldsymbol{\pi^{0},\boldsymbol{\eta},\boldsymbol{\eta}^{\prime}}\boldsymbol{\rbrace}$ through a special unitary transformation $\mathrm{V}\in SU(3)$,


\begin{equation} \begin{bmatrix} \boldsymbol{\pi^{0}} \vphantom{\dfrac{a}{\tfrac{a}{b}}}\\ \boldsymbol{\eta} \vphantom{\dfrac{a}{\tfrac{a}{b}}}\\ \boldsymbol{\eta}^{\prime} \vphantom{\dfrac{a}{\tfrac{a}{b}}} \end{bmatrix} \boldsymbol{=} \begin{bmatrix} \sqrt{\tfrac{1}{2}} & \boldsymbol{-} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 \vphantom{\tfrac{a}{\tfrac{a}{b}}}\\ \sqrt{\tfrac{1}{6}} & \hphantom{\boldsymbol{-}}\sqrt{\tfrac{1}{6}} & \boldsymbol{-}\sqrt{\tfrac{2}{3}} \vphantom{\tfrac{a}{\tfrac{a}{b}}}\\ \sqrt{\tfrac{1}{3}} & \hphantom{\boldsymbol{-}}\sqrt{\tfrac{1}{3}} & \hphantom{\boldsymbol{-}}\sqrt{\tfrac{1}{3}} \vphantom{\tfrac{a}{\tfrac{a}{b}}} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}\overline{\boldsymbol{u}} \vphantom{\dfrac{a}{\tfrac{a}{b}}}\\ \boldsymbol{d}\overline{\boldsymbol{d}} \vphantom{\dfrac{a}{\tfrac{a}{b}}}\\ \boldsymbol{s}\overline{\boldsymbol{s}} \vphantom{\dfrac{a}{\tfrac{a}{b}}} \end{bmatrix} =\mathrm{V} \begin{bmatrix} \boldsymbol{u}\overline{\boldsymbol{u}} \vphantom{\dfrac{a}{\tfrac{a}{b}}}\\ \boldsymbol{d}\overline{\boldsymbol{d}} \vphantom{\dfrac{a}{\tfrac{a}{b}}}\\ \boldsymbol{s}\overline{\boldsymbol{s}} \vphantom{\dfrac{a}{\tfrac{a}{b}}} \end{bmatrix} \tag{1}\label{1} \end{equation} see Figure.


$ \newcommand{\FR}[2]{{\textstyle \frac{#1}{#2}}} \newcommand{\BK}[3]{\left|{#1},{#2}\right\rangle_{#3}} \newcommand{\BoldExp}[2]{{#1}^{\boldsymbol{#2}}} \newcommand{\BoldSub}[2]{{#1}_{\boldsymbol{#2}}} \newcommand{\MM}[4] {\begin{bmatrix} #1 & #2\\ #3 & #4\\ \end{bmatrix}} \newcommand{\MMM}[9] {\textstyle \begin{bmatrix} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \\ \end{bmatrix}} \newcommand{\CMRR}[2] {\begin{bmatrix} #1 \\ #2 \end{bmatrix}} \newcommand{\CMRRR}[3] {\begin{bmatrix} #2 \\ #3 \end{bmatrix}} \newcommand{\CMRRRR}[4] {\begin{bmatrix} #1 \\ #2 \\ #3 \\ #4 \end{bmatrix}} \newcommand{\RMCC}[2] {\begin{bmatrix} #1 & #2 \end{bmatrix}} \newcommand{\RMCCC}[3] {\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}} \newcommand{\RMCCCC}[4] {\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}} $




$\boldsymbol{\S\:}\textbf{A. Mesons from three quarks}$ $\boldsymbol{u},\boldsymbol{d},\boldsymbol{s} : \boldsymbol{3}\boldsymbol{\otimes}\overline{\boldsymbol{3}}\boldsymbol{=}\boldsymbol{1}\boldsymbol{\oplus}\boldsymbol{8}$


Suppose we know the existence of three quarks only : $\boldsymbol{u}$, $\boldsymbol{d}$ and $\boldsymbol{s}$. Under full symmetry these are the basic states, let
\begin{equation} \boldsymbol{u}= \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \qquad \boldsymbol{d}= \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \qquad \boldsymbol{s}= \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \tag{001}\label{001} \end{equation} of a 3-dimensional complex Hilbert space of quarks, say $\mathbf{Q}\equiv \mathbb{C}^{\boldsymbol{3}}$. A quark $\boldsymbol{\xi} \in \mathbf{Q}$ is expressed in terms of these basic states as \begin{equation} \boldsymbol{\xi}=\xi_u\boldsymbol{u}+\xi_d\boldsymbol{d}+\xi_s\boldsymbol{s}= \begin{bmatrix} \xi_u\\ \xi_d\\ \xi_s \end{bmatrix} \qquad \xi_u,\xi_d,\xi_s \in \mathbb{C} \tag{002}\label{002} \end{equation} For a quark $\boldsymbol{\zeta} \in \mathbf{Q}$ \begin{equation} \boldsymbol{\zeta}=\zeta_u\boldsymbol{u}+\zeta_d\boldsymbol{d}+\zeta_s\boldsymbol{s}= \begin{bmatrix} \zeta_u\\ \zeta_d\\ \zeta_s \end{bmatrix} \tag{003}\label{003} \end{equation} the respective antiquark $\overline{\boldsymbol{\zeta}}$ is expressed by the complex conjugates of the coordinates \begin{equation} \overline{\boldsymbol{\zeta}}=\overline{\zeta}_u \overline{\boldsymbol{u}}+\overline{\zeta}_d\overline{\boldsymbol{d}}+\overline{\zeta}_s\overline{\boldsymbol{s}}= \begin{bmatrix} \overline{\zeta}_u\\ \overline{\zeta}_d\\ \overline{\zeta}_s \end{bmatrix} \tag{004}\label{004} \end{equation} with respect to the basic states
\begin{equation} \overline{\boldsymbol{u}}= \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \qquad \overline{\boldsymbol{d}}= \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \qquad \overline{\boldsymbol{s}}= \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \tag{005}\label{005} \end{equation} the antiquarks of $\boldsymbol{u},\boldsymbol{d}$ and $\boldsymbol{s}$ respectively. The antiquarks belong to a different space, the space of antiquarks $\overline{\mathbf{Q}}\equiv \mathbb{C}^{\boldsymbol{3}}$.


Since a meson is a quark-antiquark pair, we'll try to find the product space \begin{equation} \mathbf{M}=\mathbf{Q}\boldsymbol{\otimes}\overline{\mathbf{Q}}\: \left(\equiv \mathbb{C}^{\boldsymbol{9}}\right) \tag{006}\label{006} \end{equation} Using the expressions \eqref{002} and \eqref{004} of the quark $\boldsymbol{\xi} \in \mathbf{Q}$ and the antiquark $\overline{\boldsymbol{\zeta}} \in \overline{\mathbf{Q}}$ respectively, we have for the product meson state $ \mathrm{X} \in \mathbf{M}$ \begin{equation} \begin{split} \mathrm{X}=\boldsymbol{\xi}\boldsymbol{\otimes}\overline{\boldsymbol{\zeta}}=&\xi_u\overline{\zeta}_u \left(\boldsymbol{u}\boldsymbol{\otimes}\overline{\boldsymbol{u}}\right)+\xi_u\overline{\zeta}_d \left( \boldsymbol{u}\boldsymbol{\otimes}\overline{\boldsymbol{d}}\right)+\xi_u\overline{\zeta}_s \left(\boldsymbol{u}\boldsymbol{\otimes}\overline{\boldsymbol{s}}\right)+ \\ &\xi_d\overline{\zeta}_u \left(\boldsymbol{d}\boldsymbol{\otimes}\overline{\boldsymbol{u}}\right)+\xi_d\overline{\zeta}_d \left( \boldsymbol{d}\boldsymbol{\otimes}\overline{\boldsymbol{d}}\right)+\xi_d\overline{\zeta}_s \left(\boldsymbol{d}\boldsymbol{\otimes}\overline{\boldsymbol{s}}\right)+\\ &\xi_s\overline{\zeta}_u \left(\boldsymbol{s}\boldsymbol{\otimes}\overline{\boldsymbol{u}}\right)+\xi_s\overline{\zeta}_d \left( \boldsymbol{s}\boldsymbol{\otimes}\overline{\boldsymbol{d}}\right)+\xi_s\overline{\zeta}_s \left(\boldsymbol{s}\boldsymbol{\otimes}\overline{\boldsymbol{s}}\right) \end{split} \tag{007}\label{007} \end{equation} In order to simplify the expressions, the product symbol $"\boldsymbol{\otimes}"$ is omitted and so \begin{equation} \begin{split} \mathrm{X}=\boldsymbol{\xi}\overline{\boldsymbol{\zeta}}=&\xi_u\overline{\zeta}_u \boldsymbol{u}\overline{\boldsymbol{u}}+\xi_u\overline{\zeta}_d \boldsymbol{u}\overline{\boldsymbol{d}}+\xi_u\overline{\zeta}_s \boldsymbol{u}\overline{\boldsymbol{s}}+ \\ &\xi_d\overline{\zeta}_u \boldsymbol{d}\overline{\boldsymbol{u}}+\xi_d\overline{\zeta}_d \boldsymbol{d}\overline{\boldsymbol{d}}+\xi_d\overline{\zeta}_s \boldsymbol{d}\overline{\boldsymbol{s}}+\\ &\xi_s\overline{\zeta}_u \boldsymbol{s}\overline{\boldsymbol{u}}+\xi_s\overline{\zeta}_d \boldsymbol{s}\overline{\boldsymbol{d}}+\xi_s\overline{\zeta}_s \boldsymbol{s}\overline{\boldsymbol{s}} \end{split} \tag{008}\label{008} \end{equation} Due to the fact that $\mathbf{Q}$ and $\overline{\mathbf{Q}}$ are of the same dimension, it's convenient to represent the meson states in the product 9-dimensional complex space $\:\mathbf{M}=\mathbf{Q}\boldsymbol{\otimes}\overline{\mathbf{Q}}\:$ by square $3 \times 3$ matrices instead of row or column vectors \begin{equation} \mathrm{X}=\boldsymbol{\xi}\overline{\boldsymbol{\zeta}}= \begin{bmatrix} \xi_u\overline{\zeta}_u & \xi_u\overline{\zeta}_d & \xi_u\overline{\zeta}_s\\ \xi_d\overline{\zeta}_u & \xi_d\overline{\zeta}_d & \xi_d\overline{\zeta}_s\\ \xi_s\overline{\zeta}_u & \xi_s\overline{\zeta}_d & \xi_s\overline{\zeta}_s \end{bmatrix}= \begin{bmatrix} \xi_u\\ \xi_d\\ \xi_s \end{bmatrix} \begin{bmatrix} \overline{\zeta}_u \\ \overline{\zeta}_d \\ \overline{\zeta}_s \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \xi_u\\ \xi_d\\ \xi_s \end{bmatrix} \begin{bmatrix} \overline{\zeta}_u & \overline{\zeta}_d & \overline{\zeta}_s \end{bmatrix} \tag{009}\label{009} \end{equation} The product space $\:\mathbf{M}=\mathbf{Q}\boldsymbol{\otimes}\overline{\mathbf{Q}}\:$ is created by completion of the set of states \eqref{008} with arbitrary complex coefficients \begin{equation} \begin{split} \mathrm{X}=&\mathrm{x}_{_{11}}\boldsymbol{u}\overline{\boldsymbol{u}}+\mathrm{x}_{_{12}} \boldsymbol{u}\overline{\boldsymbol{d}}+\mathrm{x}_{_{13}} \boldsymbol{u}\overline{\boldsymbol{s}}+ \\ &\mathrm{x}_{_{21}}\boldsymbol{d}\overline{\boldsymbol{u}}+\mathrm{x}_{_{22}} \boldsymbol{d}\overline{\boldsymbol{d}}+\mathrm{x}_{_{23}} \boldsymbol{d}\overline{\boldsymbol{s}}+ \qquad \mathrm{x}_{_{ij}} \in \mathbb{C}\\ &\mathrm{x}_{_{31}} \boldsymbol{s}\overline{\boldsymbol{u}}+\mathrm{x}_{_{32}} \boldsymbol{s}\overline{\boldsymbol{d}}+\mathrm{x}_{_{33}} \boldsymbol{s}\overline{\boldsymbol{s}} \end{split} \tag{010}\label{010} \end{equation} that is \begin{equation} \mathrm{X}= \begin{bmatrix} \mathrm{x}_{_{11}} & \mathrm{x}_{_{12}} & \mathrm{x}_{_{13}}\\ \mathrm{x}_{_{21}} & \mathrm{x}_{_{22}} & \mathrm{x}_{_{23}}\\ \mathrm{x}_{_{31}} & \mathrm{x}_{_{32}} & \mathrm{x}_{_{33}} \end{bmatrix} \:, \qquad \mathrm{x}_{_{ij}} \in \mathbb{C} \tag{011}\label{011} \end{equation} So $\:\mathbf{M}=\mathbf{Q}\boldsymbol{\otimes}\overline{\mathbf{Q}}\:$ is identical to $\mathbb{C}^{\boldsymbol{9}}$ with base states \begin{align} &\boldsymbol{u}\overline{\boldsymbol{u}}= \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{u}\overline{\boldsymbol{d}}= \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{u}\overline{\boldsymbol{s}}= \begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \tag{012a}\label{012a}\\ &\boldsymbol{d}\overline{\boldsymbol{u}}= \begin{bmatrix} 0 & 0 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{d}\overline{\boldsymbol{d}}= \begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} \quad \:\boldsymbol{d}\overline{\boldsymbol{s}}= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix} \tag{012b}\label{012b}\\ &\boldsymbol{s}\overline{\boldsymbol{u}}= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 1 & 0 & 0 \end{bmatrix} \quad \:\boldsymbol{s}\overline{\boldsymbol{d}}= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} \quad \:\boldsymbol{s}\overline{\boldsymbol{s}}= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} \tag{012c}\label{012c} \end{align} This basis is represented symbolically by a $3\times 3$ array \begin{equation} \mathcal{F}_{\mathbf{M}}= \begin{bmatrix} \boldsymbol{u}\overline{\boldsymbol{u}} & \boldsymbol{u}\overline{\boldsymbol{d}} & \boldsymbol{u}\overline{\boldsymbol{s}}\\ \boldsymbol{d}\overline{\boldsymbol{u}} & \boldsymbol{d}\overline{\boldsymbol{d}} & \boldsymbol{d}\overline{\boldsymbol{s}}\\ \boldsymbol{s}\overline{\boldsymbol{u}} & \boldsymbol{s}\overline{\boldsymbol{d}} & \boldsymbol{s}\overline{\boldsymbol{s}} \end{bmatrix} \tag{013}\label{013} \end{equation} In this Hilbert space the usual inner product between states \begin{equation} \mathrm{X}= \begin{bmatrix} \mathrm{x}_{_{11}} & \mathrm{x}_{_{12}} & \mathrm{x}_{_{13}}\\ \mathrm{x}_{_{21}} & \mathrm{x}_{_{22}} & \mathrm{x}_{_{23}}\\ \mathrm{x}_{_{31}} & \mathrm{x}_{_{32}} & \mathrm{x}_{_{33}} \end{bmatrix} \:, \qquad \mathrm{Y}= \begin{bmatrix} \mathrm{y}_{_{11}} & \mathrm{y}_{_{12}} & \mathrm{y}_{_{13}}\\ \mathrm{y}_{_{21}} & \mathrm{y}_{_{22}} & \mathrm{y}_{_{23}}\\ \mathrm{y}_{_{31}} & \mathrm{y}_{_{32}} & \mathrm{y}_{_{33}} \end{bmatrix} \tag{014}\label{014} \end{equation} is \begin{equation} \begin{split} \langle \mathrm{X},\mathrm{Y}\rangle \equiv &\mathrm{x}_{_{11}}\overline{\mathrm{y}}_{_{11}}+\mathrm{x}_{_{12}}\overline{\mathrm{y}}_{_{12}}+\mathrm{x}_{_{13}}\overline{\mathrm{y}}_{_{13}}+\\ &\mathrm{x}_{_{21}}\overline{\mathrm{y}}_{_{21}}+\mathrm{x}_{_{22}}\overline{\mathrm{y}}_{_{22}}+\mathrm{x}_{_{23}}\overline{\mathrm{y}}_{_{23}}+\\ &\mathrm{x}_{_{31}}\overline{\mathrm{y}}_{_{31}}+\mathrm{x}_{_{32}}\overline{\mathrm{y}}_{_{32}}+\mathrm{x}_{_{33}}\overline{\mathrm{y}}_{_{33}} \end{split} \tag{015}\label{015} \end{equation} which, using the $3\times 3$ matrix representation of states, is the trace of the matrix product $\mathrm{X}\BoldExp{\mathrm{Y}}{*}$
\begin{equation} \langle \mathrm{X},\mathrm{Y}\rangle =\mathrm{Tr}\left[\mathrm{X}\BoldExp{\mathrm{Y}}{*}\right] \tag{016}\label{016} \end{equation} given that $\BoldExp{\mathrm{Y}}{*}$ is the complex conjugate of the transpose of $\mathrm{Y}$ \begin{equation} \BoldExp{\mathrm{Y}}{*}\equiv \BoldExp{ \begin{bmatrix} \mathrm{y}_{_{11}} & \mathrm{y}_{_{12}} & \mathrm{y}_{_{13}}\\ \mathrm{y}_{_{21}} & \mathrm{y}_{_{22}} & \mathrm{y}_{_{23}}\\ \mathrm{y}_{_{31}} & \mathrm{y}_{_{32}} & \mathrm{y}_{_{33}} \end{bmatrix}} {*} = \overline{\begin{bmatrix} \mathrm{y}_{_{11}} & \mathrm{y}_{_{12}} & \mathrm{y}_{_{13}}\\ \mathrm{y}_{_{21}} & \mathrm{y}_{_{22}} & \mathrm{y}_{_{23}}\\ \mathrm{y}_{_{31}} & \mathrm{y}_{_{32}} & \mathrm{y}_{_{33}} \end{bmatrix}^{\mathsf{T}}} = \begin{bmatrix} \overline{\mathrm{y}}_{_{11}} & \overline{\mathrm{y}}_{_{21}} & \overline{\mathrm{y}}_{_{31}}\\ \overline{\mathrm{y}}_{_{12}} & \overline{\mathrm{y}}_{_{22}} & \overline{\mathrm{y}}_{_{32}}\\ \overline{\mathrm{y}}_{_{13}} & \overline{\mathrm{y}}_{_{23}} & \overline{\mathrm{y}}_{_{33}} \end{bmatrix} \tag{017}\label{017} \end{equation} Now, under a unitary transformation $\;W \in SU(3)\;$ in the 3-dimensional space of quarks $\;\mathbf{Q}\;$, we have \begin{equation} \BoldExp{\boldsymbol{\xi}}{'} = W\boldsymbol{\xi} \tag{018}\label{018} \end{equation} so in the space of antiquarks $\overline{\mathbf{Q}}\;$, since $\;\BoldExp{\boldsymbol{\zeta}}{'}=W \boldsymbol{\zeta}\;$ \begin{equation} \overline{\BoldExp{\boldsymbol{\zeta}}{'}}= \overline{W}\;\overline{\boldsymbol{\zeta}} \tag{019}\label{019} \end{equation} and for the meson state \begin{align} \BoldExp{\mathrm{X}}{'} & =\BoldExp{\boldsymbol{\xi}}{'}\boldsymbol{\otimes}\overline{\BoldExp{\boldsymbol{\zeta}}{'}}=\left(W\boldsymbol{\xi}\right)\left(\overline{W}\overline{\boldsymbol{\zeta}} \right) = \Biggl(W\begin{bmatrix} \xi_u\\ \xi_d\\ \xi_s \end{bmatrix}\Biggr) \Biggl(\overline{W}\begin{bmatrix} \overline{\zeta}_u\\ \overline{\zeta}_d\\ \overline{\zeta}_s \end{bmatrix}\Biggr)^{\mathsf{T}} \nonumber\\ & = W\Biggl(\begin{bmatrix} \xi_u\\ \xi_d\\ \xi_s \end{bmatrix} \begin{bmatrix} \overline{\zeta}_u & \overline{\zeta}_d & \overline{\zeta}_s \end{bmatrix}\Biggr)\overline{W}^{\mathsf{T}} =W\left(\boldsymbol{\xi}\boldsymbol{\otimes}\overline{\boldsymbol{\zeta}}\right)\BoldExp{W}{*}=W\;\mathrm{X}\;\BoldExp{W}{*} \nonumber \tag{020}\label{020} \end{align} that is \begin{equation} \BoldExp{\mathrm{X}}{'} = W\;\mathrm{X}\;\BoldExp{W}{*} \tag{021}\label{021} \end{equation} Above equation \eqref{021} is the transformation law of meson states in the 9-dimensional space $\;\mathbf{M}=\mathbf{Q}\boldsymbol{\otimes}\overline{\mathbf{Q}}\;$ induced by a unitary transformation $\;W \in SU(3)\;$ in the 3-dimensional space of quarks $\mathbf{Q}$.



Under this transformation law the inner product of two meson states is invariant because its relation with the trace, equation \eqref{016}, yields \begin{equation} \langle \BoldExp{\mathrm{X}}{'},\BoldExp{\mathrm{Y}}{'}\rangle =\mathrm{Tr}\left[\BoldExp{\mathrm{X}}{'}\BoldExp{\BoldExp{\mathrm{Y}}{'}}{*}\right]=\mathrm{Tr}\Bigl[\left(W\mathrm{X}\BoldExp{W}{*}\right) \BoldExp{\left(W\mathrm{Y}\BoldExp{W}{*}\right)}{*}\Bigr]=\mathrm{Tr}\Bigl[W \left( \mathrm{X}\BoldExp{Y}{*}\right)\BoldExp{W}{*}\Bigr]=\mathrm{Tr}\Bigl[\mathrm{X}\BoldExp{Y}{*}\Bigr] \tag{022}\label{022} \end{equation} The last equality in above equation \eqref{022} is valid since under the transformation law \eqref{021} the trace remains invariant. More generally, for unitary $\;W \in SU(n)\;$ and $\;A\;$ a $\;n \times n\;$ complex matrix the transformation
\begin{equation} \BoldExp{\mathrm{A}}{'} = W\;\mathrm{A}\;\BoldExp{W}{*} \tag{023}\label{023} \end{equation}
if expressed in terms of elements, yields (we use the Einstein summation convention) \begin{equation} \BoldExp{a_{ij}}{'} = w_{i\rho}a_{\rho\sigma}\BoldExp{w_{\sigma j}}{*} \tag{024}\label{0242} \end{equation} so \begin{equation} \mathrm{Tr}\Bigl[\BoldExp{\mathrm{A}}{'}\Bigr]=\BoldExp{a_{ii}}{'} = w_{i\rho}a_{\rho\sigma}\BoldExp{w_{\sigma i}}{*}=(\BoldExp{w_{\sigma i}}{*}w_{i\rho})a_{\rho\sigma}=\delta_{\sigma\rho}a_{\rho\sigma}=a_{\rho\rho}=\mathrm{Tr}\Bigl[A\Bigr] \tag{025}\label{025} \end{equation} proving the invariance of inner product under the transformation law \eqref{021} \begin{equation} \langle \BoldExp{\mathrm{X}}{'},\BoldExp{\mathrm{Y}}{'}\rangle =\langle \mathrm{X},\mathrm{Y}\rangle \tag{026}\label{026} \end{equation}


Now, obviously the meson state represented by the identity matrix \begin{equation} \mathrm{I}= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \tag{027}\label{027} \end{equation} is unchanged under the transformation \eqref{021} and if normalized yields \begin{equation} \BoldSub{\mathrm{F}}{0}=\sqrt{\tfrac{1}{3}} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} =\sqrt{\tfrac{1}{3}}\left(\boldsymbol{u}\overline{\boldsymbol{u}}+\boldsymbol{d}\overline{\boldsymbol{d}}+\boldsymbol{s}\overline{\boldsymbol{s}} \right)\equiv \BoldExp{\boldsymbol{\eta}}{\prime} \tag{028}\label{028} \end{equation} that is, it represents the $\;\BoldExp{\boldsymbol{\eta}}{\prime}\;$ meson. The 1-dimensional subspace $\;\boldsymbol{\lbrace}\BoldSub{\mathrm{F}}{0}\boldsymbol{\rbrace}\;$ spanned by this state is invariant. Note that $\;\BoldExp{\boldsymbol{\eta}}{\prime}=\sqrt{3}\cdot \mathrm{Tr}\left[\mathcal{F}_{\mathbf{M}}\right]$.


Any meson state orthogonal to this space, $\mathrm{X}\perp\boldsymbol{\lbrace}\BoldSub{\mathrm{F}}{0}\boldsymbol{\rbrace} $, remains orthogonal under the transformation. But \begin{equation} \mathrm{X}\perp \boldsymbol{\lbrace}\BoldSub{\mathrm{F}}{0}\boldsymbol{\rbrace}\Leftrightarrow\langle \mathrm{X},\BoldSub{\mathrm{F}}{0}\rangle =0\Leftrightarrow\mathrm{Tr}\left[\mathrm{X}\BoldSub{\mathrm{F}}{0}^{\boldsymbol{*}}\right]=0\Leftrightarrow\mathrm{Tr}\left[\mathrm{X}\right]=0 \tag{029}\label{029} \end{equation}
So, the 8-dimensional linear subspace of all meson states with traceless matrix representation is the orthogonal complement of the 1-dimensional subspace $\;\boldsymbol{\lbrace}\BoldSub{\mathrm{F}}{0}\boldsymbol{\rbrace}\;$ and if $\;\boldsymbol{\lbrace}\BoldSub{\mathrm{F}}{1},\BoldSub{\mathrm{F}}{2},\cdots,\BoldSub{\mathrm{F}}{8}\boldsymbol{\rbrace}\;$ is any basis which spans this space then \begin{equation} \boldsymbol{\lbrace}\BoldSub{\mathrm{F}}{1},\BoldSub{\mathrm{F}}{2},\cdots,\BoldSub{\mathrm{F}}{8}\boldsymbol{\rbrace}=\boldsymbol{\lbrace}\BoldSub{\mathrm{F}}{0}\boldsymbol{\rbrace}^{\boldsymbol{\perp}}=\Bigl\{ \mathrm{X} \in \mathbf{Q}\boldsymbol{\otimes}\overline{\mathbf{Q}}\; :\; \mathrm{Tr}\left[X\right]=0 \; \Bigr\} \tag{030}\label{030} \end{equation}
This space is invariant under the transformation \eqref{021}. There are arbitrary many choices of the basis $\;\left(\BoldSub{\mathrm{F}}{1},\BoldSub{\mathrm{F}}{2},\cdots,\BoldSub{\mathrm{F}}{8}\right)\;$ but a proper one must correspond to mesons in the real world and be orthonormal if possible. So, the normalized traceless meson state \begin{equation} \BoldSub{\mathrm{F}}{3}=\sqrt{\tfrac{1}{2}} \begin{bmatrix} 1 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}0\\ 0 & \boldsymbol{-}1 & \hphantom{\boldsymbol{-}}0\\ 0 & \hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}0 \end{bmatrix} =\sqrt{\tfrac{1}{2}}\left(\boldsymbol{u}\overline{\boldsymbol{u}}-\boldsymbol{d}\overline{\boldsymbol{d}} \right)\equiv \BoldExp{\boldsymbol{\pi}}{0} \tag{031}\label{031} \end{equation}
represents of course the $\;\BoldExp{\boldsymbol{\pi}}{0}\;$ meson (pion).


The basis $\mathcal{F}_{\mathbf{M}}$ may be expressed symbolically as sum of a diagonal and a traceless component \begin{equation} \begin{split} &\mathcal{F}_{\mathbf{M}}=\Bigl(\tfrac{1}{3}\mathrm{Tr}\left[\mathcal{F}_{\mathbf{M}}\right]\Bigr)\mathcal{I}+\Bigl[\mathcal{F}_{\mathbf{M}}-\Bigl(\tfrac{1}{3}\mathrm{Tr}\left[\mathcal{F}_{\mathbf{M}}\right]\Bigr)\mathcal{I}\Bigr]\\ &=\begin{bmatrix} \dfrac{\BoldExp{\boldsymbol{\eta}}{\prime}}{\sqrt{3}} & \mathbf{0} & \mathbf{0}\\ \mathbf{0} & \dfrac{\BoldExp{\boldsymbol{\eta}}{\prime}}{\sqrt{3}} & \mathbf{0}\\ \mathbf{0} & \mathbf{0} & \dfrac{\BoldExp{\boldsymbol{\eta}}{\prime}}{\sqrt{3}} \end{bmatrix} + \begin{bmatrix} \dfrac{\left(2\boldsymbol{u}\overline{\boldsymbol{u}}-\boldsymbol{d}\overline{\boldsymbol{d}}-\boldsymbol{s}\overline{\boldsymbol{s}}\right) }{3}{\rule[0ex]{-10pt}{0ex}} & \boldsymbol{u}\overline{\boldsymbol{d}} & \boldsymbol{u}\overline{\boldsymbol{s}}\\ \boldsymbol{d}\overline{\boldsymbol{u}} & \dfrac{\left(-\boldsymbol{u}\overline{\boldsymbol{u}}+2\boldsymbol{d}\overline{\boldsymbol{d}}-\boldsymbol{s}\overline{\boldsymbol{s}}\right) }{3} & \boldsymbol{d}\overline{\boldsymbol{s}} \\ \boldsymbol{s}\overline{\boldsymbol{u}} & \boldsymbol{s}\overline{\boldsymbol{d}} & {\rule[-2ex]{-10pt}{6ex}} \dfrac{\left(-\boldsymbol{u}\overline{\boldsymbol{u}}-\boldsymbol{d}\overline{\boldsymbol{d}}+2\boldsymbol{s}\overline{\boldsymbol{s}}\right)}{3} \end{bmatrix} \end{split} \tag{032}\label{032} \end{equation}


The 3rd diagonal element of the traceless component of $\mathcal{F}_{\mathbf{M}}$, if opposed and normalized, yields \begin{equation} \BoldSub{\mathrm{F}}{8}=\sqrt{\tfrac{1}{6}} \begin{bmatrix} 1 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}0\\ 0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0\\ 0 & \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}2 \end{bmatrix} =\sqrt{\tfrac{1}{6}}\left(\boldsymbol{u}\overline{\boldsymbol{u}}+\boldsymbol{d}\overline{\boldsymbol{d}}-2\boldsymbol{s}\overline{\boldsymbol{s}} \right)\equiv \boldsymbol{\eta} \tag{033}\label{033} \end{equation}

that is, it represents the $\;\boldsymbol{\eta}\;$ meson.


(to be continued in $\boldsymbol{\S\:}\textbf{B}$)


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...