I'm confused about the terminology in the two contexts since I can't figure out if they have a similar motivation. Afaik, the definitions state that quantum processes should be very slow to be called adiabatic while adiabatic thermodynamic processes are supposed to be those that don't lose heat. Based on my current intuition, this would mean that the thermodynamic process is typically fast (not leaving enough time for heat transfer). What gives, why the apparent mismatch?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
The gravitation formula says F=Gm1m2r2,so if the mass of a bob increases then the torque on it should also increase...
-
Problem Statement: Imagine a spherical ball is dropped from a height h, into a liquid. What is the maximum average height of the displaced...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
-
Inspired by Polyomino Z pentomino and rectangle packing into rectangle Also in this series: Tiling rectangles with F pentomino plus rectangl...
No comments:
Post a Comment