I derived two equations for a 2DOF harmonic oscillator system, declared state variable equations, and placed them into matrix form: Ax′+Bx=C. I have a Matlab script to determine the constants (K's, m's, & R's). I'll be seeing how the system responds from 40 - 1000 Hz.
How can I manipulate these matrices to find the solutions to x′: ˙xs,˙xm,˙vs,˙vm
ms¨xs+Rs1˙xs+R2s(˙xs−˙xm)+Ks1xs+Ks2(xs−xm)=P0mm¨xm+Rm˙xm−R2s(˙xs−˙xm)+Kmxm−Ks2(xs−xm)=0˙xs−vs=0˙xm−vm=0
[1000010000ms0000mm][˙xs˙xm˙vs˙vm]+[00−10000−1Ks1+Ks2−Ks2Rs1+Rs2−Rs2−Ks2Km+Ks2−Rs2Rm+Rs2][xsxmvsvm]=[0010]eiωt
No comments:
Post a Comment