Saturday, 13 December 2014

homework and exercises - Representation $(1/2,1/2)$ of Lorentz group


I want to show that the Lorentz representation $(1/2,1/2)$ corresponds to the normal vectorial representation $A^\mu$. For this I need to show that the double spinors $A_{ij}=(A_\mu\sigma^\mu\sigma^2)_{ij}$ that transforms like $$ A_{ij}\rightarrow(\Lambda_R)_{ik}(\Lambda_L)_{jl}A_{kl} $$ implies that the $A_\mu$ transforms like $$ A^\mu\rightarrow\Lambda^\mu_{\>\>\nu} A^\nu. $$



But I really don't know how to even start this. Maybe I have issues understanding what is this representation. Here is what I did: $$ A'_\mu\sigma^\mu\sigma^2=\Lambda_R\Lambda_LA_\mu\sigma^\mu\sigma^2 $$ Then multiply by $\sigma^2\sigma_\nu$ on the left and taking the trace $$ Tr(\sigma^2\sigma_\nu A'_\mu{\sigma^\mu\sigma^2)=Tr(\sigma^2\sigma_\nu\Lambda_R\Lambda_LA_\mu\sigma^\mu\sigma^2)\\ 2A'_\mu\delta_\nu^\mu=Tr(\sigma^2\Lambda_R\sigma^2\Lambda_LA_\mu\delta^\mu_\nu)\\ 2A'_\nu=Tr(\Lambda_L^\dagger\Lambda_LA_\nu)\\ 2A'_\nu=Tr(\sigma^2\Lambda_L^{-1}\sigma^2\Lambda_LA_\nu)\\ 2A'_\nu=A_\nu} $$which can't be good.


EDIT:


I came up with a solution: $$ A_{ij}'=(\Lambda_R)_{ik}(\Lambda_L)_{jl}A_{kl}\\ (A_\mu'\sigma^\mu\sigma^2)_{ij}=(\Lambda_R)_{ik}(A_\mu\sigma^\mu\sigma^2)_{kl}(\Lambda_L)_{lj}^T\\ \text{Tr}(\sigma^2\sigma_\nu A_\mu'\sigma^\mu\sigma^2)=\text{Tr}(\sigma^2\sigma_\nu\Lambda_RA_\mu\sigma^\mu\sigma^2\Lambda_L^T)\nonumber\\ \text{Tr}(\sigma_\nu A_\mu'\sigma^\mu)=\text{Tr}(\sigma_\nu\Lambda_RA_\mu\sigma^\mu\sigma^2\Lambda_L^T\sigma^2)\nonumber\\ A_\mu'\text{Tr}(\sigma_\nu\sigma^\mu)=\text{Tr}(\sigma_\nu\Lambda_R\sigma^\mu\Lambda_R^*)A_\mu\nonumber\\ 2A_\mu'{\delta}{_\nu^\mu}=\text{Tr}(\sigma_\nu\Lambda_R\sigma^\mu\Lambda_R^*)A_\mu\nonumber\\ A_\nu'=\frac{1}{2}\text{Tr}(\sigma_\nu\Lambda_R\sigma^\mu\Lambda_R^*)A_\mu\nonumber\\ A_\nu'={\Lambda}{_\nu^{\>\>\mu}}A_\mu. $$ but I'm not sure why my indices are not good (compared to what I'm supposed to get ${A^{\mu}}'=\Lambda^\mu_{\>\>\nu}A^\nu$).




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...