(The puzzle statement now identifies these numbers as equivalent.)
O O
O O O O
O O O O
O O O O O
O O O O O
O O O O O O O
O O O O O O O O
O O O O O O O
O O O O O O
O O O O O O O O
O O O O O O O O O O
#1. You are (now) here
ıııııı
Oıııııı
ıııııııı ıııııı
Oıııııııı Oıııııııı
ıııııııııı ıııııııııı
OııııııııııOıııııııııı
ıııııııııOOııııııııııı
OııııııOOıııııııııııııı
ıııııııııı ıııııOOııııııııııııııııı
ııııııııııOOOOOO ıııOOııııııııııııııııııı
ıııOıııııOOOOOOOOOOıOııııııııııııııııııııı
ıııııııOOOOOOOOOOOOOOııııııııııııııııııı
ııııOOOOOOOOOOOOOOOOOOOıııııııııııııııı
OO OOOOOOOOOOOOOOOOOıııııııııııı
O OOOOOOOOOOOOOOOOOıııııııı
O OOOOOOOOOOOOOOOOOOıııı
O OOOOOOOOOOOOOOOOOOııO
OOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOıOıOOıOı
ıOOıOıOOıOıOOı
ıOOıOOıOıOOıOıOOOıı
ıOııOıOOıı
ıOııOıOıı
#2. Hummingbirds don’t know the words
ıııııııııııııııııııııııııııııı
ııı ııı
ııı ıııııııııııııııııı ııııııııııııııııııııııııııı
ııı ııı ııı ııı ııı
ııı ııı ıııııı ııı ııı ııııııııııııııı ııı
ııı ııı ııı ııı ııı ııı ııı ııı
ııı ıııııı ııı ııı ııı ııı ııı ııı ııı
ııı ııı ııı ııı ııı ııı ııı
ıııııııııııııııııı ııı ııııııııııııııı ııı ııı
ııı ııı ııı
ııııııııııııııııııııııııııııııııııııııı ııı
ııı ııı
ııı ııııııııııııııııııııııııııııııııııııııı
ııı ııı
ııı ııı ııııııııııııııı
ııı ııı ııı ııı
ııı ııı ııı ııı ııı
ııı ııı ııı ııı
ııı ııııııııııııııı ııı
ııı ııı
ııııııııııııııııııııııııııı
#3. Through the labyrinth we unwind
O
O O
OıOıO
O O O O
O OıOıOıOıO O
O O O O O O O O
OıOıO OıOıO OıOıO OıOıO
O O O O O O O O O O O O O O O O
OıOıOıOıOıOıOıOıOıOıOıOıOıOıOıOıO
O O O O O O O O
OıOıO OıOıO OıOıO OıOıO
O O O O O O O O O O O O O O O O
OıOıOıOıOıOıOıOıO OıOıOıOıOıOıOıOıO
O O O O O O O O
OıOıO OıOıO OıOıO OıOıO
O O O O O O O O O O O O O O O O
OıOıOıOıO OıOıOıOıOıOıOıOıOıOıOıOıO
O O O O O O O O
OıOıO OıOıO OıOıO OıOıO
O O O O O O O O O O O O O O O O
OıOıOıOıOıOıOıOıOıOıOıOıOıOıOıOıO
#4. $\sf \small N \scriptsize ONE$ders of the ancient world
Obviously (?) the $\sf\scriptsize ONE$-and$\small/$or-$\sf\scriptsize NONE$ders here represent patterns of mathematical constructs equivalent numbers.
ı?O?ı?O?
O? ı?
O?
ı?
O?
ı?
O?
#5. What picture could be fifth, but not at other #s here? Why?
.
. ııııııııııOııııııııııOııııııııııOııııııııııOııııııııııOıııııııııı
.
. ıııııııııOıııııııııOıııııııııOıııııııııOıııııııııOııııııııı
.
. ııııııııOııııııııOııııııııOııııııııOııııııııOıııııııı
.
. ıııııııOıııııııOıııııııOıııııııOıııııııOııııııı
.
. ııııııOııııııOııııııOııııııOııııııOıııııı
.
. ııOııııııııOııııııııOıııııOııOııııı
.
. ııııOııııOııııOııııOııııOıııı
.
. ıııOıııOıııOıııOıııOııı
.
. ııOııOııOııOııOıı
.
. ıOıOıOıOıOı
.
. O
. ıııııOOOOOOı
. OOOOOOıııOıOOOOOı
. OOOOOOOOOOOOııOOıOOOOı
. OOOOOOOOOOOOOOOOOOıOOOıOOOı
. OOOOOOOOOOOOOOOOOOOOOıOOıOOOıOOı
. OOOOOOOOOOOOOOOOOOOOOOOOOOııOOıOOOıOı
. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOıııOOıOOOıı
. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOıOııOOıOOOı
. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOıOOııOOıOOO
. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOıOıOııOOıOOO
. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOıOııOııOOıOOO
. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOıOıııOııOOıOOO
. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOıOııııOııOOıOOO
#6. Destination unknown
The answer can be pictured in infinitely many ways. The ?
-shaped placeholder presently at #5 is meant to be replaced. Only numbers composed of O
zeros and$\small/$or ı
ones are pertinent. Two-dimensional shapes and surrounding words are just gratuitous embellishments. If you are still nowhere after considering all this, why not visit $\sf \small O \scriptsize NE$derland for comparison?
Answer
In the $n$th picture, the strings are all
representations of the number $0$ where the base is one of the primitive $n$th roots of unity. (That is, solutions to $z^n=1$ that don't work for any smaller $n$.)
So any picture containing
ııııı
would fit in slot 5, but not any other.
No comments:
Post a Comment