I wonder if it's possible to discover another version of quantum theory that doesn't depend on complex numbers. We may discover a formulation of quantum mechanics using p-adic numbers, quaternions or a finite field etc. Also, physical states lives on a Hilbert space. What if we consider the infinite dimensional Hilbert space to be the tangent space of an infinite dimensional manifold at some point? Is it possible to make these generalized theories and if it's possible can it lead to new predictions or resolve some of the difficulties that are present?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form ψ=Ae−βrwith $A = \frac{\bet...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
Small vessels generally lean into a turn, whereas big vessels lean out. Why do ships lean to the outside, but boats lean to the inside of a ...
-
I'm sitting in a room next to some totally unopened cans of carbonated soft drinks (if it matters — the two affected cans are Coke Zero...
-
What exactly are the spikes, or peaks and valleys, caused by in pictures such as these Wikipedia states that "From the point of view of...
No comments:
Post a Comment