I wonder if it's possible to discover another version of quantum theory that doesn't depend on complex numbers. We may discover a formulation of quantum mechanics using p-adic numbers, quaternions or a finite field etc. Also, physical states lives on a Hilbert space. What if we consider the infinite dimensional Hilbert space to be the tangent space of an infinite dimensional manifold at some point? Is it possible to make these generalized theories and if it's possible can it lead to new predictions or resolve some of the difficulties that are present?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
I have searched for equations regarding craters and I came across two of them. The first one is from this NOAO website in the level two sec...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
Yesterday, I understood what it means to say that the moon is constantly falling (from a lecture by Richard Feynman ). In the picture below ...
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
No comments:
Post a Comment