Sunday 17 July 2016

mathematical physics - Weyl anomaly in 2d CFT (string theory lectures by D.Tong)


In his lectures on String Theory (http://www.damtp.cam.ac.uk/user/tong/string.html), Tong gives a proof of the Weyl anomaly, using equation $(4.36)$. It seems wrong to me.


Here he uses the OPE between the stress-energy tensors $T_{zz}T_{ww}$ obtained when trace vanishes, i.e. $T_{z \bar{z}} = 0$: this implies that they are holomorphic functions $T_{zz} = T_{zz}(z)$. But in this proof he starts from the fact that $T_{z \bar{z}} \neq 0$ (we want to proof this thing after all) and so $T_{zz}$ is not a holomorphic function anymore! In the OPE $(4.36)$ I should have also terms with $(\bar{z}- \bar{w})$.


I can't also understand why he uses in the rest of the proof only the singular term $(z-w)^{-4}$, neglecting the other ones $(z-w)^{-2}$, $(z-w)^{-1}$.


(The same proof is given in these lectures https://arxiv.org/abs/1511.04074 on conformal field theory, equation $(6.9)$).


I'll be really thankful if someone could explain me this proof :)



Answer





TL;DR. The main point is that Tong only needs to identify the leading singularity in order to determine the Weyl anomaly $$ \langle T^{\alpha}{}_{\alpha}\rangle~=~-\frac{c}{12} R^{(2)}. \tag{4.34} $$ It is indeed unclear how to properly account for subleading terms in Tong's approach.



Let us introduce a regulator $\varepsilon>0$ in the $XX$ OPE


$$ {\cal R} X(z,\bar{z})X(w,\bar{w})~=~-\frac{\alpha^{\prime}}{2} \ln(|z-w|^2+\varepsilon)~+~: X(z,\bar{z})X(w,\bar{w}): \tag{4.22}$$


to better identify the singular structure. The $\partial X\partial X$ OPE becomes:


$$ \begin{align} {\cal R} \partial_zX(z,\bar{z})& \partial_wX(w,\bar{w}) \cr ~\stackrel{(4.22)}{=}&~-\frac{\alpha^{\prime}}{2}\frac{(\bar{z}-\bar{w})^2}{(|z-w|^2+\varepsilon)^2}~+~:\partial_zX(z,\bar{z}) \partial_wX(w,\bar{w}): ~.\end{align} \tag{4.23}$$


The stress-energy-momentum tensor is


$$ T_{zz}~~=~ -\frac{1}{\alpha^{\prime}} :\partial_zX\partial_zX:~.\tag{4.25} $$


The $TT$ OPE becomes


$$ \begin{align} {\cal R}T_{zz}(z,\bar{z}) &T_{ww}(w,\bar{w})\cr ~\stackrel{(4.23)+(4.25)}{=}&~\frac{c}{2}\frac{(\bar{z}-\bar{w})^4}{(|z-w|^2+\varepsilon)^4} \cr &-\frac{2}{\alpha^{\prime}} \frac{(\bar{z}-\bar{w})^2}{(|z-w|^2+\varepsilon)^2}:\partial_zX(z,\bar{z}) \partial_wX(w,\bar{w}):~+~\ldots. \end{align}\tag{4.28}$$



We next use the energy conservation


$$ \partial_z T_{\bar{z}z} + \partial_{\bar{z}} T_{zz}~=~0 \tag{4.35z}$$


to calculate$^1$


$$ \begin{align} {\cal R}\partial_z T_{z\bar{z}}(z,\bar{z}) &\partial_wT_{w\bar{w}}(w,\bar{w}) \cr ~\stackrel{(4.35z)}{=}&~{\cal R}\partial_{\bar{z}} T_{zz}(z,\bar{z})\partial_{\bar{w}}T_{ww}(w,\bar{w})\cr ~\stackrel{(4.28)}{=}&~ \partial_{\bar{z}}\partial_{\bar{w}} \left[ \frac{c}{2} \frac{(\bar{z}-\bar{w})^4}{(|z-w|^2+\varepsilon)^4} +\ldots \right] \cr ~=&~\partial_{\bar{w}} \left[ 2c \frac{\varepsilon(\bar{z}-\bar{w})^3}{(|z-w|^2+\varepsilon)^5} +\ldots \right] \cr ~=&~-10c\frac{\varepsilon^2(\bar{z}-\bar{w})^2}{(|z-w|^2+\varepsilon)^6}+4c\frac{\varepsilon(\bar{z}-\bar{w})^2}{(|z-w|^2+\varepsilon)^5}+\ldots \cr ~=&~\frac{c}{12}\partial_z\partial_w\left[\frac{6\varepsilon^2}{(|z-w|^2+\varepsilon)^4}-\frac{4\varepsilon}{(|z-w|^2+\varepsilon)^3}\right]+\ldots \cr ~=&~\frac{c}{12}\partial_z\partial_w\partial_z\partial_{\bar{w}}\frac{\varepsilon}{(|z-w|^2+\varepsilon)^2}+\ldots, \end{align}\tag{4.36}$$


which leads to the sought-for OPE


$$\begin{align} {\cal R}T_{z\bar{z}}(z,\bar{z}) &T_{w\bar{w}}(w,\bar{w}) \cr ~\stackrel{(4.36)}{=}&~\frac{c}{12}\partial_z\partial_{\bar{w}}\frac{\varepsilon}{(|z-w|^2+\varepsilon)^2}+\ldots \cr ~\stackrel{(4.2d)}{=}&~\frac{c\pi}{12}\partial_z\partial_{\bar{w}}\delta^2(z\!-\!w,\bar{z}\!-\!\bar{w}) +\ldots . \end{align} \tag{4.38}$$


Here we use the following representation of the 2D Dirac delta distribution$^2$


$$ \delta^2(z\!-\!w,\bar{z}\!-\!\bar{w})~:=~\delta({\rm Re} (z\!-\!w))~\delta({\rm Im} (z\!-\!w))~=~\lim_{\varepsilon\searrow 0^+} \frac{1}{\pi}\frac{\varepsilon}{(|z-w|^2+\varepsilon)^2}. \tag{4.2d}$$


Now proceed as in Tong's notes. $\Box$


References:




  1. D. Tong, Lectures on String Theory; Subsection 4.4.2.


--


$^1$ Tong's trick (4.36) suggests another route: Let us instead consider the $\partial X \bar{\partial}X$ OPE


$$\begin{align} {\cal R} \partial_zX(z,\bar{z}) &\partial_{\bar{w}}X(w,\bar{w})\cr ~=&~{\cal R} \partial_{\bar{z}}X(z,\bar{z}) \partial_wX(w,\bar{w})\cr ~=&~\frac{\alpha^{\prime}}{2}\frac{\varepsilon}{(|z-w|^2+\varepsilon)^2}+\ldots ~\stackrel{(4.2d)}{=}~\frac{\alpha^{\prime}\pi}{2}\delta^2(z\!-\!w,\bar{z}\!-\!\bar{w}) +\ldots. \end{align}$$


It is comforting that the regularization $\varepsilon>0$ correctly predicts that the leading singularity is a 2D Dirac delta distribution. Then the $T\bar{T}$ OPE becomes


$$ \begin{align} {\cal R}T_{zz}(z,\bar{z})&T_{\bar{w}\bar{w}}(w,\bar{w})\cr ~=&~\frac{c}{2}\frac{\varepsilon^2}{(|z-w|^2+\varepsilon)^4} +\frac{2}{\alpha^{\prime}} \frac{\varepsilon}{(|z-w|^2+\varepsilon)^2}:\partial_zX(z,\bar{z})\partial_{\bar{w}}X(w,\bar{w}):~+~\ldots. \end{align}$$


The leading singularity is given by double contractions, which are proportional to the square of the 2D Dirac delta distribution. This is ill-defined, cf. e.g. this Phys.SE post.


Nevertheless, let us now formally apply Tong's trick: Using the energy conservation (4.35z) leads to



$$ {\cal R}\partial_z T_{z\bar{z}}(z,\bar{z}) \partial_{\bar{w}}T_{w\bar{w}}(w,\bar{w}) ~\stackrel{(4.35z)}{=}~{\cal R}\partial_{\bar{z}} T_{zz}(z,\bar{z})\partial_w T_{\bar{w}\bar{w}}(w,\bar{w}), $$


so that the sought-for OPE leads to the square of the 2D Dirac delta distribution as well


$$ \begin{align} {\cal R}T_{z\bar{z}}(z,\bar{z}) &T_{w\bar{w}}(w,\bar{w})\cr ~=&~\frac{c}{2}\frac{\varepsilon^2}{(|z-w|^2+\varepsilon)^4}+\ldots ~\stackrel{(4.2d)}{=}~\frac{c\pi^2}{2}\delta^2(z\!-\!w,\bar{z}\!-\!\bar{w})^2+\ldots. \end{align}$$


There might be a way to resolve the square of the 2D Dirac delta distribution, and argue that the leading singularity is given by (4.38), although we shall not pursue the matter here. $\Box$


$^2$ Note that there is a factor of 2 in Tong's definition of the 2D Dirac delta distribution, cf. the end of Section 4.0.1.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...