Why does a quantum field theory invariant under dilations almost always also have to be invariant under proper conformal transformations? To show your favorite dilatation invariant theory is also invariant under proper conformal transformations is seldom straightforward. Integration by parts, introducing Weyl connections and so on and so forth are needed, but yet at the end of the day, it can almost always be done. Why is that?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
-
Inspired by Polyomino Z pentomino and rectangle packing into rectangle Also in this series: Tiling rectangles with F pentomino plus rectangl...
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
No comments:
Post a Comment