Friday 15 July 2016

quantum field theory - Intuition for S-duality


first of all, I need to confess my ignorance with respect to any physics since I'm a mathematician. I'm interested in the physical intuition of the Langlands program, therefore I need to understand what physicists think about homological mirror symmetry which comes from S-duality. This question is related to my previous one Intuition for Homological Mirror Symmetry


S-duality


As I have heard everything starts with an $S$-duality between two $N= 4$ super-symmetric Yang-Mills gauge theories of dimension $4$, $(G, \tau)$ and $(^{L}G, \frac{-1}{n_{\mathfrak{g}}\tau})$, where $\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g^2}$, $G$ is a compact connected simple Lie group and $n_{\mathfrak{g}}$ is the lacing number (the maximal number of edges connecting two vertices in the Dynkin diagram) . And, then the theory would be non-perturbative, since it would be defined "for all" $\tau$, because amplitudes are computed with an expansion in power series in $\tau$


So I need to understand what this would mean to a physicist.


1) First of all, what's the motivation form the Yang-Mills action and how should I understand the coupling constants $\theta$ and $g$?


2) How can I get this so called expansion in power series with variable $\tau$ of the probability amplitude?


3) What was the motivation to start looking at this duality? A creation of an everywhere defined (in $\tau$) gauge theory, maybe?


Thanks in advance.




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...