Saturday, 7 December 2019

quantum mechanics - How to show that $lim_{rto0} U(r)=0$ in the radial differential equation?


We have the following differential equation:


$$\left({- \hbar ^2 \over 2 \mu } \frac{d^2}{dr^2} + {\hbar^2 \ell(\ell+1) \hbar^2 \over 2 \mu r^2} + V(r) \right)U(r)= EU(r)$$


in order to find the eigenvector $\psi (\mathbf{r})$ which it is the unique basis for $H$ , $L_z$ and $L$.



We know that the effective potential $${\hbar^2 \ell(\ell+1) \hbar^2 \over 2 \mu r^2}$$ represents the centrifugal force which pushes the particle outward. It is necessary to know the behaviour of $U(r)$ or $V(r)$ at the origin $r=0$.


In the lecture, they indicated $\lim_{r\to 0} U(r)=0$, but I can't find a way to get this result. Could you explain "what's going on", mathematically and physically? By physically I mean that when the radius is too small the radial function vanishes; what's behind this result?



Answer



This derivation utilises the idea of 3D isotropic harmonic oscillator, and is not simply based, but is a total line by line replication of part of this article Wikipedia 3D isotropic harmonic oscillator.


The article above linked above is a page I would urge the OP to read, also I would encourage the OP to watch and take notes on the relevant YouTube videos by J. Binney (Oxford) and L. Susskind (Stanford).



The potential of a 3D isotropic harmonic oscillator is



${\displaystyle V(r)={\frac {1}{2}}m_{0}\omega ^{2}r^{2}.}$




In this article it is shown that an N-dimensional isotropic harmonic oscillator has the energies



$${\displaystyle E_{n}=\hbar \omega {\Bigl (}n+{\frac {N}{2}}{\Bigr )}\quad {\text{with}}\quad n=0,1,\ldots ,\infty ,}$$



i.e., n is a non-negative integral number; $ω$ is the (same) fundamental frequency of the $N$ modes of the oscillator. In this case $N= 3$, so that the radial Schrödinger equation becomes,



$${\displaystyle \left[-{\hbar ^{2} \over 2m_{0}}{d^{2} \over dr^{2}}+{\hbar ^{2}l(l+1) \over 2m_{0}r^{2}}+{\frac {1}{2}}m_{0}\omega ^{2}r^{2}-\hbar \omega {\bigl (}n+{\tfrac {3}{2}}{\bigr )}\right]u(r)=0.}$$



Introducing




$${\displaystyle \gamma \equiv {\frac {m_{0}\omega }{\hbar }}}$$



and recalling that ${\displaystyle u(r)=rR(r)\,}$, we will show that the radial Schrödinger equation has the normalized solution,



$${\displaystyle R_{n,l}(r)=N_{nl}\,r^{l}\,e^{-{\frac {1}{2}}\gamma r^{2}}\;L_{{\frac {1}{2}}(n-l)}^{(l+{\frac {1}{2}})}(\gamma r^{2}),}$$



where the function ${\displaystyle L_{k}^{(\alpha )}(\gamma r^{2})}$ is a generalized Laguerre polynomial in $γr^2$ of order $k$ (i.e., the highest power of the polynomial is proportional to $γkr^2k$).


The normalization constant $N_{nl} is,



$${\displaystyle N_{nl}=\left[{\frac {2^{n+l+2}\,\gamma ^{l+{\frac {3}{2}}}}{\pi ^{\frac {1}{2}}}}\right]^{\frac {1}{2}}\left[{\frac {[{\frac {1}{2}}(n-l)]!\;[{\frac {1}{2}}(n+l)]!}{(n+l+1)!}}\right]^{\frac {1}{2}}.}$$




The eigenfunction $R_n,l(r)$ belongs to energy $E_n$ and is to be multiplied by the spherical harmonic ${\displaystyle Y_{lm}(\theta ,\phi )\,}$, where



$${\displaystyle l=n,n-2,\ldots ,l_{\min }\quad {\hbox{with}}\quad l_{\min }={\begin{cases}1&\mathrm {if} \;n\;\mathrm {odd} \\0&\mathrm {if} \;n\;\mathrm {even} \end{cases}}}$$



This is the same result as given in this article if we realize that ${\displaystyle \gamma =2\nu \,}$.


Derivation


First we transform the radial equation by a few successive substitutions to the generalized Laguerre differential equation, which has known solutions: the generalized Laguerre functions. Then we normalize the generalized Laguerre functions to unity. This normalization is with the usual volume element $r^2 dr$.


First we scale the radial coordinate




$${\displaystyle y={\sqrt {\gamma }}r\quad {\hbox{with}}\quad \gamma \equiv {\frac {m_{0}\omega }{\hbar }},}$$



and then the equation becomes



$${\displaystyle \left[{d^{2} \over dy^{2}}-{l(l+1) \over y^{2}}-y^{2}+2n+3\right]v(y)=0}$$



with $${\displaystyle v(y)=u\left(y/{\sqrt {\gamma }}\right)}$$


Consideration of the limiting behaviour of $v(y)$ at the origin and at infinity suggests the following substitution for $v(y)$,



$${\displaystyle v(y)=y^{l+1}e^{-y^{2}/2}f(y).}$$




This substitution transforms the differential equation to



$${\displaystyle \left[{d^{2} \over dy^{2}}+2\left({\frac {l+1}{y}}-y\right){\frac {d}{dy}}+2n-2l\right]f(y)=0,}$$



where we divided through with ${\displaystyle y^{l+1}e^{-y^{2}/2}}$, which can be done so long as $y$ is not zero.


Transformation to Laguerre polynomials


If the substitution ${\displaystyle x=y^{2}\,}$ is used, ${\displaystyle y={\sqrt {x}}}$, and the differential operators become



$${\displaystyle {\frac {d}{dy}}={\frac {dx}{dy}}{\frac {d}{dx}}=2y{\frac {d}{dx}}=2{\sqrt {x}}{\frac {d}{dx}},{\text{ and }}}{\displaystyle {\frac {d^{2}}{dy^{2}}}={\frac {d}{dy}}\left(2y{\frac {d}{dx}}\right)=4x{\frac {d^{2}}{dx^{2}}}+2{\frac {d}{dx}}.}$$




The expression between the square brackets multiplying $f(y)$ becomes the differential equation characterizing the generalized Laguerre equation :



$${\displaystyle x{\frac {d^{2}g}{dx^{2}}}+{\Big (}(l+{\frac {1}{2}})+1-x{\Big )}{\frac {dg}{dx}}+{\frac {1}{2}}(n-l)g(x)=0}$$



with ${\displaystyle g(x)\equiv f({\sqrt {x}})\,\;}$.


Provided ${\displaystyle k\equiv (n-l)/2\,}$ is a non-negative integral number, the solutions of this equations are generalized (associated) Laguerre polynomials



$${\displaystyle g(x)=L_{k}^{(l+{\frac {1}{2}})}(x).}$$




From the conditions on $k$ follows: (i) ${\displaystyle n\geq l\,}$ and (ii) n and l are either both odd or both even. This leads to the condition on $l$ given above.


Recovery of the normalized radial wavefunction


Remembering that ${\displaystyle u(r)=rR(r)\,}$, we get the normalized radial solution



$${\displaystyle R_{n,l}(r)=N_{nl}\,r^{l}\,e^{-{\frac {1}{2}}\gamma r^{2}}\;L_{{\frac {1}{2}}(n-l)}^{(l+{\frac {1}{2}})}(\gamma r^{2}).}$$



The normalization condition for the radial wavefunction is



$${\displaystyle \int _{0}^{\infty }r^{2}|R(r)|^{2}\,dr=1.}$$




Substituting ${\displaystyle q=\gamma r^{2}\,\;}$, gives ${\displaystyle dq=2\gamma r\,dr\,\;}$ and the equation becomes



$${\displaystyle {\frac {N_{nl}^{2}}{2\gamma ^{l+{3 \over 2}}}}\int _{0}^{\infty }q^{l+{1 \over 2}}e^{-q}\left[L_{{\frac {1}{2}}(n-l)}^{(l+{\frac {1}{2}})}(q)\right]^{2}\,dq=1.}$$



By making use of the orthogonality properties of the generalized Laguerre polynomials, this equation simplifies to



$${\displaystyle {\frac {N_{nl}^{2}}{2\gamma ^{l+{3 \over 2}}}}\cdot {\frac {\Gamma [{\frac {1}{2}}(n+l+1)+1]}{[{\frac {1}{2}}(n-l)]!}}=1.}$$



Hence, the normalization constant can be expressed as




$${\displaystyle N_{nl}={\sqrt {\frac {2\,\gamma ^{l+{3 \over 2}}\,({\frac {n-l}{2}})!}{\Gamma ({\frac {n+l}{2}}+{\frac {3}{2}})}}}}$$



Other forms of the normalization constant can be derived by using properties of the gamma function, while noting that n and lare both of the same parity. This means that $n + l$ is always even, so that the gamma function becomes



$${\displaystyle \Gamma \left[{1 \over 2}+\left({\frac {n+l}{2}}+1\right)\right]={\frac {{\sqrt {\pi }}(n+l+1)!!}{2^{{\frac {n+l}{2}}+1}}}={\frac {{\sqrt {\pi }}(n+l+1)!}{2^{n+l+1}[{\frac {1}{2}}(n+l)]!}},}$$



where we used the definition of the double factorial. Hence, the normalization constant is also given by



$${\displaystyle N_{nl}=\left[{\frac {2^{n+l+2}\,\gamma ^{l+{3 \over 2}}\,[{1 \over 2}(n-l)]!\;[{1 \over 2}(n+l)]!}{\;\pi ^{1 \over 2}(n+l+1)!}}\right]^{1 \over 2}={\sqrt {2}}\left({\frac {\gamma }{\pi }}\right)^{1 \over 4}\,({2\gamma })^{\ell \over 2}\,{\sqrt {\frac {2\gamma (n-l)!!}{(n+l+1)!!}}}.}$$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...