What is the capture cross-section of a black hole region for ultra-relativistic particles? I have read that it is
σ = 274πR2s
for a Schwarzschild BH in the geometric optics limit. Where does the coefficient come from?
Edit - Sources:
- Absorption and emission spectra of a Schwarzschild black hole.
- Fermion absorption cross section of a Schwarzschild black hole.
Answer
What follows is a very rough adaption of chapter 25 in Gravitation by Misner, Thorne, and Wheeler.
Begin with the Schwarzschild metric with polar angle θ fixed at π/2: ds2=−(1−RSr)dt2+11−RS/rdr2+r2dϕ2.
Now the derivative in the first term is simply the energy E, which is related to the conserved energy at infinity E∞ by E=E∞/(1−RS/r). Furthermore, the definition of angular momentum is L=r2(dϕ/dλ), which is also conserved. Inserting these definitions gives −E2∞1−RS/r+11−RS/r(drdλ)2+L2r2+m2=0,
At this point, we have a nice general result, but to apply it to photons we take the limit m→0, which gives (drdϕ)2=r4b2(1−b2r2(1−RSr)).
The only thing left is to decide what rmin is allowed to be if the light is to escape. Since at this point in the trajectory the photon's velocity is entirely in the tangential direction by construction, the question becomes how close in can a photon have a circular orbit? The answer is rmin=3RS/2. Thus bmax, the maximum impact parameter for a photon to be captured, obeys b2max(32RS−RS)=(32RS)3,
1 We could set m=0 here, but by holding off we get slightly more general intermediate results.
No comments:
Post a Comment