Friday, 30 January 2015

Does quantum mechanics violate the equivalence principle?


I have a question about equivalence principle in quantum mechanics.


Consider a Schroedinger equation under gravitional field [12mI2+mgΦgrav]ψ=itψ


where mI and mg are the inertia and gravitational masses, respectively. =1 unit is adopted.


To the contrary as the classical mechanics mId2xdt2=mgg

we can choose a transformation x=x12gt2 to "switch off" the gravity. But it seems the transformation will not switch off gravity in quantum mechanics, Eq. (1). Does it mean quantum mechanics break the equivalence principle? (I can think about relativistic Hamiltonian, but it will not resolve the problem, as far as I can see)




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...