Saturday, 17 January 2015

quantum mechanics - The cleverest way to calculate $left[hat{a}^{M},hat{a}^{dagger N}right]$ with $left[hat{a},hat{a}^{dagger}right]=1$


Who can provide me some elegant solution for


$$\left[\hat{a}^{M},\hat{a}^{\dagger N}\right]\qquad\text{with} \qquad\left[\hat{a},\hat{a}^{\dagger}\right]~=~1$$


other than brute force calculation?


================================================


O lala!!! Thanks for @Prathyush and @Qmechanic !!! I got the same result with Qmechanic... I think Prathyush's suggestion should be equivalent to the my suggestion of the correspondence up to a canonical transformation. Here is my calculation (I was not confident to post it...)


$\begin{array}{c} \mbox{representation of }\left(\hat{a},\hat{a}^{\dagger}\right)\mbox{ on polynomial space }span\left\{ \frac{x^{n}}{\sqrt{n!}}\right\} _{n\ge0}\\ \hat{a}\left[f\left(x\right)\right]=\frac{d}{dx}f\left(x\right)\;;\;\hat{a}^{\dagger}\left[f\left(x\right)\right]=xf\left(x\right)\;;\;\left[\hat{a},\hat{a}^{\dagger}\right]\left[f\left(x\right)\right]=id\left[f\left(x\right)\right]\\ \left|0\right\rangle \sim 1\;;\;\left|n\right\rangle \sim x^{n}/\sqrt{n!} \end{array}$


$\begin{array}{c} \mbox{calculate the normal ordering }\left[\hat{a}^{M},\hat{a}^{\dagger}{}^{N}\right]\mbox{:}\\ \sim\left[\frac{d^{M}}{dx^{M}},x^{N}\right]=\frac{d^{M}}{dx^{M}}\left(x^{N}\star\right)-x^{N}\frac{d^{M}}{dx^{M}}\left(\star\right)\\ \sim\left\{ \overset{min\left\{ M,N\right\} }{\underset{k=0}{\sum}}\frac{N!}{\left(N-k\right)!}C_{M}^{k}\left(\hat{a}^{\dagger}\right)^{N-k}\left(\hat{a}\right)^{M-k}\right\} -\left(\hat{a}^{\dagger}\right)^{N}\left(\hat{a}\right)^{M}\\ \end{array}$



====================== One comment on 02-12-2012: The representation I was using is actually related to Bergmann representation with the inner product for Hilbert space (polynomials) being:


$\left\langle f\left(x\right),g\left(x\right)\right\rangle :=\int dxe^{-x^{2}}\overline{f\left(x\right)}g\left(x\right)\,,x\in\mathbb{R}\,,\, f,g\in\mathbb{C}\left[x\right]$



Answer



The standard way is to use generating functions (in this case a la coherent states). Usually one would like the resulting formula to be normal-ordered.




  1. Recall the following version $$\tag{1} e^Ae^B~=~e^{[A,B]}e^Be^A$$ of the Baker-Campbell-Hausdorff formula. The formula (1) holds if the commutator $[A,B]$ commutes with both the operators $A$ and $B$.




  2. Put $A=\alpha a $ and $B=\beta a^{\dagger}$, where $\alpha,\beta\in\mathbb{C}$.





  3. Let $[a, a^{\dagger}]=\hbar {\bf 1}$, so that the commutator $[A,B]=\alpha\beta\hbar {\bf 1}$ is a $c$-number.




  4. Now Taylor-expand the exponential factors in eq. (1).




  5. For fixed orders $n,m\in \mathbb{N}_0$, consider terms in eq. (1) proportional to $\alpha^n\beta^m$.





  6. Deduce that the the antinormal-ordered operator $a^n(a^{\dagger})^m$ can be normal-ordered as $$\tag{2} a^n(a^{\dagger})^m~=~\sum_{k=0}^{\min(n,m)} \frac{n!m!\hbar^k}{(n-k)!(m-k)! k!}(a^{\dagger})^{m-k}a^{n-k}. $$




  7. Finally, deduce that the normal-ordered commutator is $$\tag{3} [a^n,(a^{\dagger})^m]~=~\sum_{k=1}^{\min(n,m)} \frac{n!m!\hbar^k}{(n-k)!(m-k)! k!}(a^{\dagger})^{m-k}a^{n-k}. $$




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...