Friday 29 January 2016

homework and exercises - Free Particle Path Integral Matsubara Frequency


I am trying to calculate $$Z = \int\limits_{\phi(\beta) = \phi(0) =0} D \phi\ e^{-\frac{1}{2} \int_0^{\beta} d\tau \dot{\phi}^2}$$ without transforming it to the Matsubara frequency space, I can show that $Z = \sqrt{\frac{1}{2\pi \beta}}$. However, I have a problem in obtaining the same result in the Matsubara frequency space: \begin{equation} \phi (\tau) = \frac{1}{\sqrt{\beta}} \left( \sum_{n} \phi_n \ e^{i\omega_n\tau} \right), \end{equation} with $\sum_n \phi_n =0, \omega_n = \frac{2\pi n}{\beta}$. And \begin{equation} Z = \int \prod_n D\phi_n\ \delta\left(\sum_n \phi_n\right)\ e^{-\frac{1}{2} \sum_n \phi_n \phi_{-n} \omega_n^2 } \end{equation} which, I think, vanishes.


I guess the problem lies in the measure. Any comments?



Info: I write the Schulman's derivation in imaginary time here. \begin{eqnarray} Z &=& \int\limits_{\phi(0) =\phi(\beta) = 0} D\phi(\tau) e^{-\frac{1}{2}\int_0^{\beta}d\tau\dot{\phi}^2}\\ &=& \text{lim}_{N \rightarrow \infty} (\frac{1}{2\pi \epsilon})^{(N+1)/2} \int d\phi_1 \dots d\phi_N e^{-\frac{1}{2\epsilon} \sum_{i =0}^N (\phi_{i+1} -\phi_i)^2} \end{eqnarray}


Then, we can use the identity \begin{equation} \int_{-\infty}^{\infty} du \sqrt{\frac{a}{\pi}} e^{-a(x-u)^2}\sqrt{\frac{b}{\pi}} e^{-b(u -y)^2} = \sqrt{\frac{ab}{\pi(a+b)}} e^{-\frac{ab}{a+b}(x-y)^2} \end{equation} to evaluate the sum to be \begin{equation} Z = \sqrt{\frac{1}{2\pi \beta}}. \end{equation}




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...