Wednesday, 23 March 2016

homework and exercises - Proving that $vec{v}timessum_idfrac{dm_i}{dt}vec{r}_i=t(vec{v}timessum_ivec{F}_i)$ when no external torque


There is this idea of relativity in Classical Mechanics:



The laws of mechanics valid in an inertial frame must also be valid in any frame moving uniformly with respect to it.



I was just trying to apply these to the case of the law of conservation of momentum and the law of conservation of angular momentum.


Let there be an inertial frame S and another frame S' moving with velocity $\mathbf{\vec{v}}$ w.r.t to S with:


$$\mathbf{\vec{r}}'_i = \mathbf{\vec{r}}_i - \mathbf{\vec{v}}t$$



$$\mathbf{\vec{v}}'_i = \mathbf{\vec{v}}_i - \mathbf{\vec{v}}$$


For momentum conservation: In frame S', putting $\dfrac{d}{dt} \sum_i \mathbf{\vec{p}}'_i = \mathbf{0}$ and substituting $\dfrac{d}{dt} \sum_i \mathbf{\vec{p}}_i = \mathbf{0}$ of frame S in it:


$$\dfrac{d}{dt} \sum_i \mathbf{\vec{p}}'_i = \dfrac{d}{dt} \sum_i \mathbf{\vec{p}}_i - \dfrac{d}{dt} \sum_i m_i \mathbf{\vec{v}} = \mathbf{0} - \mathbf{\vec{v}} \dfrac{d}{dt} \sum_i m_i$$


If this has to be $\mathbf{0}$, then $\sum_i m_i = 0$


Now, on to angular momentum. In frame S:


$$\dfrac{d}{dt} \sum_i \mathbf{\vec{L}}_i = \dfrac{d}{dt} \sum_i (\mathbf{\vec{r}}_i \times m_i\mathbf{\vec{v}}_i) = \mathbf{0}$$


Am trying to prove the law in frame S' from the law in S:


$$\dfrac{d}{dt} \sum_i \mathbf{\vec{L}}'_i = \dfrac{d}{dt} \sum_i \mathbf{\vec{L}}_i - \dfrac{d}{dt} \sum_i (\mathbf{\vec{r}}_i \times m_i\mathbf{\vec{v}}) - \dfrac{d}{dt} \sum_i (\mathbf{\vec{v}}t \times m_i \mathbf{\vec{v}}_i)$$


$$= \mathbf{0} - \dfrac{d}{dt} \sum_i (\mathbf{\vec{r}}_i \times m_i\mathbf{\vec{v}}) - \dfrac{d}{dt} \sum_i (\mathbf{\vec{v}}t \times m_i \mathbf{\vec{v}}_i)$$


$$= - \sum_i m_i (\mathbf{\vec{v}}_i \times \mathbf{\vec{v}}) - \sum_i \dfrac{dm_i}{dt} (\mathbf{\vec{r}}_i \times \mathbf{\vec{v}}) + \sum_i m_i (\mathbf{\vec{v}}_i \times \mathbf{\vec{v}}) - \sum_i m_i (\mathbf{\vec{v}}t \times \mathbf{\vec{a}}_i) - \sum_i \dfrac{dm_i}{dt} (\mathbf{\vec{v}}t \times \mathbf{\vec{v}}_i)$$



$$= - \sum_i \dfrac{dm_i}{dt} (\mathbf{\vec{r}}_i \times \mathbf{\vec{v}}) - \sum_i m_i (\mathbf{\vec{v}}t \times \mathbf{\vec{a}}_i) - \sum_i \dfrac{dm_i}{dt} (\mathbf{\vec{v}}t \times \mathbf{\vec{v}}_i)$$


$$= \mathbf{\vec{v}} \times \sum_i \dfrac{dm_i}{dt} \mathbf{\vec{r}}_i - \mathbf{\vec{v}}t \times \sum_i \mathbf{\vec{F}}_i$$


But this is what I wanted to prove to be $\mathbf{0}$. I stil have to prove the following:



For a system of particles at $\mathbf{\vec{r}}_i$ with mass $m_i$, which have forces $\mathbf{\vec{F}}_i$ acting on them such that $\sum_i \mathbf{\vec{r}}_i \times \mathbf{\vec{F}}_i = \mathbf{0}$, given $\sum_i \dfrac{dm_i}{dt} = 0$; how do I prove:


$$\mathbf{\vec{v}} \times \sum_i \dfrac{dm_i}{dt} \mathbf{\vec{r}}_i = \mathbf{\vec{v}}t \times \sum_i \mathbf{\vec{F}}_i$$


for any arbitrary $\mathbf{\vec{v}}$ and for all time $t$.




Answer



Using your notation of



$$ \boldsymbol{r}_{i}' =\boldsymbol{r}_{i}-\boldsymbol{v}\,t \\ \boldsymbol{v}_{i}' =\boldsymbol{v}_{i}-\boldsymbol{v} $$


and with the assumption that $\dot{\boldsymbol{v}}=0$ (uniform motion of frame S') form the linear and angular momentum expressions on the S frame.


$$ \boldsymbol{p} =\sum_{i}m_{i}\boldsymbol{v}_{i} \\ \boldsymbol{L} =\sum_{i}\left(\boldsymbol{r}_{i}\times m_{i}\boldsymbol{v}_{i}\right) $$


Now look at linear and angular momentum in the S' frame and relate them to the ones from S.


$$\require{cancel} \begin{aligned} \boldsymbol{p}'&=\sum_{i}m_{i}\boldsymbol{v}_{i}'=\sum_{i}m_{i}\left(\boldsymbol{v}_{i}-\boldsymbol{v}\right)=\boldsymbol{p}-\left(\sum_{i}m_{i}\right)\boldsymbol{v}=\boldsymbol{p}-m\,\boldsymbol{v}\\\boldsymbol{L}'&=\sum_{i}\left(\boldsymbol{r}_{i}'\times m_{i}\boldsymbol{v}_{i}'\right)=\sum_{i}\left(\boldsymbol{r}_{i}-\boldsymbol{v}\,t\right)\times m_{i}\left(\boldsymbol{v}_{i}-\boldsymbol{v}\right)\\&=\sum_{i}\left(\boldsymbol{r}_{i}\times m_{i}\boldsymbol{v}_{i}\right)-\sum_{i}(\boldsymbol{r}_{i}\times m_{i}\boldsymbol{v})-\boldsymbol{v}\,t\times\left(\sum_{i}m_{i}\boldsymbol{v}_{i}\right)+\cancel{\boldsymbol{v}\,t\times\left(\sum_{i}m_{i}\right)\boldsymbol{v}}\\&=\boldsymbol{L}+\boldsymbol{v}\times\sum_{i}\left(m_{i}\boldsymbol{r}_{i}\right)+\sum_{i}\left(m_{i}\boldsymbol{v}_{i}\right)\times\boldsymbol{v}\,t \end{aligned}$$


To show that these quantities are conserved, take the derivative (assuming that $\frac{{\rm d}\boldsymbol{p}}{{\rm d}t}=0$ and that $\frac{{\rm d}\boldsymbol{L}}{{\rm d}t}=0$)


$$\begin{aligned} \frac{{\rm d}}{{\rm d}t}\boldsymbol{p}'&=\cancel{\frac{{\rm d}}{{\rm d}t}\boldsymbol{p}}-m\,\cancel{\frac{{\rm d}}{{\rm d}t}\boldsymbol{v}}=0\\\frac{{\rm d}}{{\rm d}t}\boldsymbol{L}'&=\cancel{\frac{{\rm d}}{{\rm d}t}\boldsymbol{L}}+\frac{{\rm d}}{{\rm d}t}\left[\boldsymbol{v}\times\sum_{i}\left(m_{i}\boldsymbol{r}_{i}\right)\right]+\frac{{\rm d}}{{\rm d}t}\left[\sum_{i}\left(m_{i}\boldsymbol{v}_{i}\right)\times\boldsymbol{v}\,t\right]\\&=\boldsymbol{v}\times\sum_{i}\left(m_{i}\frac{{\rm d}}{{\rm d}t}\boldsymbol{r}_{i}\right)+\cancel{\frac{{\rm d}}{{\rm d}t}\boldsymbol{p}}\times\boldsymbol{v}\,t+\sum_{i}\left(m_{i}\boldsymbol{v}_{i}\right)\times\boldsymbol{v}\\&=\boldsymbol{v}\times\sum_{i}\left(m_{i}\boldsymbol{v}_{i}\right)+\boldsymbol{p}\times\boldsymbol{v}\\&=\boldsymbol{v}\times\boldsymbol{p}+\boldsymbol{p}\times\boldsymbol{v}=0 \end{aligned}$$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...