Sunday 13 March 2016

quantum field theory - Path integral for fermion on circle


I am trying to understand talk by Edward Witten Nonsupersymmetric D-Branes and the Kitaev Fermion Chain. More concretely, I wanna to understand this slide:



If I try to calculate such path integral I do following:


$$ Z(S^1) = \int_{NS} D\psi\; e^{i\frac{1}{2}\int_0^T dt \psi \frac{d}{dt} \psi} $$


1) I need find eigenfunctions and eigenvalues for $i\frac{d}{dt}$ with antiperiodic boundary conditions: $$ i\frac{d}{dt} \psi_n = \lambda_n \psi_n, \;\;\;\;\;\;\;\;\;\; \psi_n(T) = -\psi_n(0) $$ $$ \psi_n(t) = e^{i\frac{2\pi(n+1/2)}{T}t}, \;\;\;\; \lambda_n= - \frac{2\pi(n+1/2)}{T},\;\;\;n\in \mathbb{Z} $$


Note that fermions is complex. What I need to do to calculate such integral for Majorana fermion?


2) I choose $T=2\pi$. So I need calculate: $$ \prod_{n\in \mathbb{Z}} (n+1/2) = \prod_{n>0} (n+1/2) \prod_{n≥0} (-n+1/2) = 2\prod_{n≥0} (n+1/2) \times \frac{1}{2}\prod_{n≥0}(-1) (n+1/2) = (-1)^{1+\sum_{1}^{+\infty}1} \;e^{2\sum^{+\infty}_{n=0}\ln(n+1/2)} $$


We regularise using $\zeta$-function (using this):



$$ -(-1)^{\zeta(0)} e^{-2\zeta^\prime(0,1/2)} = 2i $$


Where I have mistake? How to obtain $\sqrt{2}$?


3) I think that I missed $$ \prod_{n\in\mathbb{Z}} (-1) = (-1)^{\sum_{n\in \mathbb{Z}}1} = ? (-1)^{\sum_{n>0}1} = (-1)^{\zeta(0)} = -i $$


And so I obtain $Z(S^1)= \det^{1/2}_{AP}(i\frac{d}{dt}) = \sqrt{2}$



Answer



I agree with your eigenvalues but I'm not sure that your calculation of the Determinant via the Zeta function came out right.


I would split into $n$ positive and negative, as $$\zeta_{\lambda}(s) := \left(\frac{2\pi}{T}\right)^{-s}\sum_{n = -\infty}^{\infty} \left(n + \frac{1}{2}\right)^{-s} = \left(\frac{2\pi}{T}\right)^{-s} \left[ \zeta\left(s, \frac{1}{2}\right) + \sum_{n = 0}^{-\infty} \left(n + \frac{1}{2}\right)^{-s} - \frac{1}{2^{-s}}\right]$$ Sending $n \rightarrow -n$ in the middle term gets you $$\zeta_{\lambda}(s) = \left(\frac{2\pi}{T}\right)^{-s} \left[ \zeta\left(s, \frac{1}{2}\right) +(-1)^{-s}\zeta\left(s, -\frac{1}{2}\right) - \frac{1}{2^{-s}}\right].$$


From here we will use $\textrm{Det}_{AP}\left\{i \frac{d}{dt}\right\} = \textrm{e}^{-\zeta'_{\lambda}(0)}$. We find $$\zeta_{\lambda}'(s) = - \ln\left( \frac{2\pi}{T}\right) \left(\frac{2\pi}{T}\right)^{-s}\left[ \zeta\left(s, \frac{1}{2}\right) +(-1)^{-s}\zeta\left(s, -\frac{1}{2}\right) - \frac{1}{2^{-s}}\right] + \left(\frac{2\pi}{T}\right)^{-s}\left[ \zeta'\left(s, \frac{1}{2}\right) +i\pi (-1)^{-s}\zeta\left(s, -\frac{1}{2}\right) + (-1)^{-s}\zeta'\left(s, -\frac{1}{2}\right) - \ln(2)2^{s}\right]$$ so that $$\zeta_{\lambda}'(0) = -\ln\left(\frac{2\pi}{T}\right) \left[\zeta\left(0, \frac{1}{2}\right) + \zeta\left(0, -\frac{1}{2}\right) - 1 \right] + \left[\zeta'\left(0, \frac{1}{2}\right) + i\pi \zeta\left(0, -\frac{1}{2}\right) + \zeta'\left(0, -\frac{1}{2}\right) - \ln2\right].$$


Finally we need $\zeta(0, 1/2) = 0$, $~\zeta(0, -1/2) = 1$, $~\zeta'(0, 1/2) = -1/2 \ln2$ and $\zeta'(0, -1/2) = 1/2\ln2 - i\pi$. The first term vanishes along with the $T$ dependence whilst the second one evaluates to $$\zeta_{\lambda}'(0) = -\frac{1}{2} \ln2 + i\pi + 1/2 \ln2 - i\pi - \ln2 = -\ln2,$$ so that $\textrm{e}^{-\zeta_{\lambda}'(0) } = 2$. The normalisation of the path integral will be $\textrm{Det}_{AP}\left\{i \frac{d}{dt}\right\} ^\frac{1}{2} = \sqrt{2}$.


Comments:




  1. Firstly the $T$ dependence goes due to the invariance of the action under $t \rightarrow \mu t$ which allows, for example, the rescaling $t = Tu$ with $u \in [0,1]$.

  2. The value $2$ counts the degrees of freedom of a real fermion, and is better calculated using coherent states to form the trace of the operator $\textrm{e}^{-i\hat{H}}$ that is being calculated.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...