As I understand it, the axion $a$ originates from the spontaenous symmetry breaking of $U(1)_{PQ}$. This symmetry being anomalous, and because of the QCD vacuum structure, a non vanishing term like $\frac{a}{f_a}Tr( G \tilde{G})$ is included in the Lagrangian, where $G$ is the gluon field strenght. This determines the axion couplings to gluons. Talking about a coupling to photons would mean to consider a term like $\frac{a}{f_a} F \tilde{F}$, where $F$ is the QED field strenght. I thought a term like $ F \tilde{F}$ could be expressed as a vanishing total derivative, unlike $Tr( G \tilde{G})$, so why are we talking about axion couplings to photons ?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Problem Statement: Imagine a spherical ball is dropped from a height $h$, into a liquid. What is the maximum average height of the displaced...
-
In most books (like Cardy's) relations between critical exponents and scaling dimensions are given, for example $$ \alpha = 2-d/y_t, \;\...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
No comments:
Post a Comment