Sunday, 12 June 2016

classical mechanics - Angular velocity by velocities of 3 particles of the solid


Velocities of 3 particles of the solid, which don't lie on a single straight line, $V_1, V_2, V_3$ are given (as vector-functions). Radius-vectors $r_1, r_2$ from third particle to first and second are given aswell. How could I find the angular velocity $w$ of the solid?


I tried to solve this problem using Euler's theorem : $V_2=V_3+[w \times r_2]$, $V_1=V_3+[w \times r_1]$.


After this step I tried to consider different cases: if $V_1 $ is not collinear to $V_2$ we could write $w = k*[(V_2-V_3) \times (V_1-V_3)]$. However, it doesn't really help. The second case is even more difficult to analyze.


Second attempt consisted in solving this system by multiplication (scalar product or vector work) equations by appropriate vectors. However, I didn't really succeed.



Answer




The algebra is not especially nice, but it is just algebra. This is rigid body rotation, taking point 3 as the origin of coordinates, so effectively $$\mathbf{r}_1=\mathbf{R}_1-\mathbf{R}_3, \qquad \mathbf{r}_2=\mathbf{R}_2-\mathbf{R}_3. $$ We start as you suggested, and abbreviate $$ \mathbf{v}_1=\mathbf{V}_1-\mathbf{V}_3, \qquad \mathbf{v}_2=\mathbf{V}_2-\mathbf{V}_3, $$ so that $$ \mathbf{v}_1 = \boldsymbol{\omega}\times\mathbf{r}_1, \qquad \mathbf{v}_2 = \boldsymbol{\omega}\times\mathbf{r}_2. $$ Now since the three points are not collinear, we can let $$ \boldsymbol{\omega} = a\,\mathbf{r}_1 + b\,\mathbf{r}_2 + c\, \mathbf{r}_1\times\mathbf{r}_2 $$ but we must remember that $\mathbf{r}_1$ and $\mathbf{r}_2$ will not in general be orthogonal. We can obtain $c$ directly, from either of the two equivalent equations \begin{align*} \mathbf{r}_2\cdot\mathbf{v}_1 &= \mathbf{r}_2\cdot\boldsymbol{\omega}\times\mathbf{r}_1 = \boldsymbol{\omega}\cdot\mathbf{r}_1\times\mathbf{r}_2 = c |\mathbf{r}_1\times\mathbf{r}_2|^2 \\ \mathbf{r}_1\cdot\mathbf{v}_2 &= \mathbf{r}_1\cdot\boldsymbol{\omega}\times\mathbf{r}_2 = -\boldsymbol{\omega}\cdot\mathbf{r}_1\times\mathbf{r}_2 = -c |\mathbf{r}_1\times\mathbf{r}_2|^2 \\ \Rightarrow\quad c&= \frac{\mathbf{r}_2\cdot\mathbf{v}_1}{|\mathbf{r}_1\times\mathbf{r}_2|^2} = -\frac{\mathbf{r}_1\cdot\mathbf{v}_2}{|\mathbf{r}_1\times\mathbf{r}_2|^2} \end{align*} where we took advantage of the properties of the scalar triple product.


The other coefficients come from scalar products with $\mathbf{r}_1\times\mathbf{r}_2$. We use the general identity $$ (\mathbf{A}\times\mathbf{B})\cdot(\mathbf{C}\times\mathbf{D}) = (\mathbf{A}\cdot\mathbf{C})\,(\mathbf{B}\cdot\mathbf{D}) - (\mathbf{B}\cdot\mathbf{C})\,(\mathbf{A}\cdot\mathbf{D}) $$ and a special case of this, which we use, is $|\mathbf{r}_1\times\mathbf{r}_2|^2=|\mathbf{r}_1|^2|\mathbf{r}_2|^2-(\mathbf{r}_1\cdot\mathbf{r}_2)^2$. \begin{align*} \mathbf{r}_1\times\mathbf{r}_2 \cdot \mathbf{v}_2 &= (\mathbf{r}_1\times\mathbf{r}_2 ) \cdot (\boldsymbol{\omega}\times\mathbf{r}_2) \\ &= \left( a|\mathbf{r}_1|^2 + b(\mathbf{r}_1\cdot\mathbf{r}_2) \right)\, |\mathbf{r}_2|^2- \left( a(\mathbf{r}_1\cdot\mathbf{r}_2) + b|\mathbf{r}_2|^2 \right)\, (\mathbf{r}_1\cdot\mathbf{r}_2) \\ &= a |\mathbf{r}_1\times\mathbf{r}_2|^2 \\ \Rightarrow\quad a&=\frac{\mathbf{r}_1\times\mathbf{r}_2 \cdot \mathbf{v}_2 }{|\mathbf{r}_1\times\mathbf{r}_2|^2} \\ \mathbf{r}_1\times\mathbf{r}_2 \cdot \mathbf{v}_1 &= (\mathbf{r}_1\times\mathbf{r}_2 ) \cdot (\boldsymbol{\omega}\times\mathbf{r}_1) \\ &= \left( a|\mathbf{r}_1|^2 + b(\mathbf{r}_1\cdot\mathbf{r}_2) \right)\,(\mathbf{r}_1\cdot\mathbf{r}_2) - \left( a(\mathbf{r}_1\cdot\mathbf{r}_2) + b|\mathbf{r}_2|^2 \right) \, |\mathbf{r}_1|^2 \\ &= -b |\mathbf{r}_1\times\mathbf{r}_2|^2 \\ \Rightarrow\quad b &=-\frac{\mathbf{r}_1\times\mathbf{r}_2 \cdot \mathbf{v}_1}{|\mathbf{r}_1\times\mathbf{r}_2|^2} \end{align*}


I hope I haven't made any slips, you should definitely check!


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...