Friday, 24 June 2016

homework and exercises - Inconsistency in Lagrangian vs Hamiltonian formalism?



Can both Lagrangian and Hamiltonian formalisms lead to different solutions?


I have a simple system described by the Lagrangian \begin{equation} L(\eta,\dot{\eta},\theta,\dot{\theta})=\eta\dot{\theta}+2\theta^2. \end{equation} The equations of motion are obtained from Euler-Lagrange eq.: \begin{eqnarray} 4\theta-\dot{\eta}=0\; \mathrm{and}\; \dot{\theta}=0, \end{eqnarray} yielding the solution $\eta(t)=4\theta_0t+\eta_0$ where $\eta_0$ and $\theta_0$ are constants.


But when I obtain one of the equations of motion from the Hamiltonian (via Legendre transformation), \begin{equation} H=\left(\frac{\partial L}{\partial\dot\eta}\right)\dot\eta+\left(\frac{\partial L}{\partial\dot\theta}\right)\dot\theta - L =-2\theta^2, \end{equation} \begin{equation} \dot\eta=\frac{\partial H}{\partial p_\eta}=0, \end{equation} the situation is surprisingly different from the Lagrangian approach because $\eta$ is now a constant!


Can someone give a proper explanation for this inconsistency? Am I doing something wrong here?



Answer



The problem here is that, because there exist constraints of the form $f(q,\,p)=0$, the phase space coordinates of the usual Hamiltonian formulation aren't independent. I'm not sure how you encountered this Lagrangian, but this issue is a common hiccup in electromagnetism and (if you'll pardon a more obscure example) BRST quantisation. The good news is you can still form a Hamiltonian description equivalent to the Lagrangian one. The trick is to append suitable terms to the "naïve" Hamiltonian, as explained here, and as a result the Poisson brackets are upgraded to what are called Dirac brackets.


For your problem the full Hamiltonian is $H=-2\theta^2+c_1 p_\eta+c_2( p_\theta-\eta)$, where the $c_i$ remain to be computed as functions of undifferentiated phase space coordinates. In fact $c_1=\frac{\partial H}{\partial p_\eta}=\dot{\eta}=4\theta$ while $c_2=\frac{\partial H}{\partial p_\theta}=\dot{\theta}=0$, so $H=-2\theta^2+4\theta p_\eta$. You can verify this gives you the right equations of motion.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...