Hamiltonian quantum mechanics is often built using many ideas from Hamiltonian classical mechanics like the Poisson bracket to determine the commutator between quantum operators, which is appropriate given they are both Lie algebras. It also seems that often the specification of the Lie algebra alone is enough like, for example, the position and momentum operator. We can define many momenta, all of which are equivalent in a measurable sense given it is still conjugate to position. However, in other cases, like spin and angular momentum, it seems the Lie algebra alone misses vital information about the spectrums of each. How much information does this Lie algebra provide and how much is determined by its definition alone?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
-
Inspired by Polyomino Z pentomino and rectangle packing into rectangle Also in this series: Tiling rectangles with F pentomino plus rectangl...
No comments:
Post a Comment