Sunday, 24 September 2017

quantum field theory - Loop integral using Feynman's trick


I am trying to show for the one-loop integral with three propagators with different internal masses $m_1$, $m_2$, $m_3$, and all off-shell external momenta $p_1$, $p_2$, $p_3$ the following formula appearing in 't Hooft(1979), Bardin (1999), Denner (2007): (unfortunate metric $-,+,+,+$)


$$\int d^d q\frac{1}{(q^2+m_1^2)((q+p1)^2+m_2^2)((q+p_1+p_2)^2+m_3^2)} $$ $$=i\pi^2\int_0^1dx\int_0^xdy\frac{1}{ax^2+by^2+cxy+dx+ey+f}$$



where $a$, $b$, $c$, ... are coefficients depending on the momenta in the following way:


$a=-p_2^2$,


$b=-p_1^2$,


$c=-2p_1.p_2$,


$d=m_2^2-m_3^2+p_2^2$,


$e=m_1^2-m_2^2+p_1^2+2(p_1.p_2)$,


$f=m_3^2-i\epsilon$.


I don't really care about factors in fromt like $i\pi^2$. My simple problem is: I am totally unable to reproduce coefficients $d$, $e$ and $f$. The problem is, when I integrate over the third Feynman parameter, $m_3$ appears in all three coefficients $d$, $e$ and $f$. How do I squeeze the denominators to reproduce this formula?



Answer



Define the LHS of the equation above:



$$I=\int d^d q\frac{1}{(q^2+m_1^2)((q+p_1)^2+m_2^2)((q+p_1+p_2)^2+m_3^2)}$$


The first step is to squeeze the denominators using Feynman's trick:


$$I=\int_0^1 dx\,dy\,dz\,\delta(1-x-y-z)\int d^d q\frac{2}{[y(q^2+m_1^2)+z((q+p_1)^2+m_2^2)+x((q+p_1+p_2)^2+m_3^2)]^3}$$


The square in $q^2$ may be completed in the denominator by expanding:


$$[\text{denom}]=q^2+2q.(z p_1+x(p_1+p_2))+y m_1^2+z (p_1^2+m_2^2)+x(m_3^2+(p_1+p_2)^2)$$ $$=q^2+2q.Q+A^2\,$$


where $Q^\mu=z p_1^\mu+x(p_1+p_2)^\mu$ and $A^2=y m_1^2+z (p_1^2+m_2^2)+x(m_3^2+(p_1+p_2)^2)$, and by shifting the momentum, $q^\mu=(k-Q)^\mu$ as a change of integration variables. Upon performing the $k$ integral, we are left with integrals over Feynman parameters (because this integral has three propagators, it is UV finite):


$$I=i\pi^2\int_0^1 dx\,dy\,dz\,\delta(1-x-y-z)\frac{1}{[-Q^2+A^2]}$$


Now integrate over $z$ with the help of the Dirac delta:


$$I=i\pi^2\int_0^1 dx\int_0^{1-x}dy \frac{1}{[-Q^2+A^2]_{z\rightarrow1-y-z}}$$


To arrive at the RHS of the OP's equation(which is the part I forgot to do), we make a final change of variables: $x=1-x'$:



So that the denominator reads $ax^2+by^2+cxy+dx+ey+f$, with the coefficients $a,b,c,\ldots$ exactly defined in the question of OP. Note the change in the range of integration in $y$.


$$I=i\pi^2\int_0^1dx\int_0^xdy\frac{1}{ax^2+by^2+cxy+dx+ey+f}$$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...