Monday, 25 September 2017

particle physics - The $U(1)$ charge of a representation


My question is about the reduction of a representation of a group $SU(5)$ to irreps of the subgroup $SU(3)\times SU(2) \times U(1)$.


For example the weights of the 10 dimensional representation of SU(5) are


enter image description here


One can identify the irreps of the subgroup by regrouping the dynkin labels into $((a_3 a_4) ,(a_1), a_2)$ such that (denoting $-1$ by $\bar{1}$): $$ (1,1)_{Y} \rightarrow \left\{ \begin{array}{l l} (0 0,0,1 ) \end{array} \right. $$


$$ (\overline{3},1)_{Y} \rightarrow \left\{ \begin{array}{l l} (0 1,(0),\bar{1}) \\ (1 \bar{1},(0),\bar{1})\\ (\bar{1}0,(0),0) \end{array} \right. $$


$$ (3,2)_{Y} \rightarrow \left\{ \begin{array}{l l} (1 0,1,\bar{1}) \\ (\bar{1} 1,\bar{1},1)\\ (0\bar{1},\bar{1},1)\\ (1 0,\bar{1},0)\\ (\bar{1}1,1,0)\\ (0\bar{1},1,0) \end{array} \right. $$


My problem is: how can I derive the $Y$ charge of the $U(1)$ factor for each of these from the Dynkin labels?





Edit


The metrictensor for SU(5) is thus


$$G= \frac{1}{5}\left( \begin{array}{cccc} 4 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4 \end{array} \right). $$


However in the reference, Slansky, on page 84 the same exercise is done but the axis have negative values... $$\tilde{Y}^W = \frac{1}{3} [-2 \;1\, -1\; 2]. $$


How come they do not agree?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...