Monday, 18 September 2017

quantum mechanics - Does the canonical commutation relation fix the form of the momentum operator?


For one dimensional quantum mechanics $$[\hat{x},\hat{p}]=i\hbar. $$


Does this fix univocally the form of the $\hat{p}$ operator? My bet is no because $\hat{p}$ actually depends if we are on coordinate or momentum representation, but I don't know if that statement constitutes a proof. Moreover if we choose $\hat{x}\psi=x\psi$ is the answer of the following question yes?



For the second one


$$(\hat{x}\hat{p}-\hat{p}\hat{x})\psi=x\hat{p}\psi-\hat{p}x\psi=i\hbar\psi, $$


but I don't see how can I say that $\hat{p}$ must be proportional to $\frac{\partial}{\partial x}$. I don't know if trying to see that $\hat{p}$ must satisfy the Leibniz rule and thus it should be proportional to the $x$ derivative could help. Or using the fact that $\hat{x}$ and $\hat{p}$ must be hermitian


Any hint will be appreciated.



Answer



No. You can add an arbitrary constant shift (or an arbitrary operator commuting with $x$) without affecting the CCR.


For 1-dimensional QM, the general solution of the CCR with $\hat x$ represented as multiplication by $x$ on wave functions with argument $x$ is $\hat p=\hat p_0-A(\hat x)~~$, where $\hat p_0$ is the canonical momentum operator , and $A(x)$ is an arbitrary function of $x$.
Proof. The difference $\hat A:=\hat p_0-\hat p~$ commutes with $\hat x$, hence is a function of $\hat x$.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...