Friday, 2 January 2015

quantum mechanics - Tensor product of two different Pauli matrices $sigma_2otimeseta_1 $


I'm solving problem 3.D in H. Georgi Lie Algebra etc for fun where one is to compute the matrix elements of the direct product $\sigma_2\otimes\eta_1$ where $[\sigma_2]_{ij}\text{ and }[\eta_1]_{xy}$ are two different Pauli matrices in two different two dimensional spaces.


Defining the basis in our four dimensional tensor product space $$\tag{1}\left|1\right\rangle = \left|i=1\right\rangle\left|x=1\right\rangle\\ \left|2\right\rangle = \left|i=1\right\rangle\left|x=2\right\rangle\\ \left|3\right\rangle = \left|i=2\right\rangle\left|x=1\right\rangle\\ \left|4\right\rangle = \left|i=2\right\rangle\left|x=2\right\rangle$$



Now we know that when we multiply representations, the generators add in the sense of


$$\tag{2}[J_a^{1\otimes2}(g)]_{jyix} = [J_a^1]_{ji}\delta_{yx} +\delta_{ji}[J_a^2]_{yx}, $$ where the $J$s are the generators corresponding to the different representations $D_1$ and $D_2$ ($g$ stands for the group elements).


Using all of this I find that in the basis of $(1)$ the matrix representation of the tensor product is given by


$$\tag{3}\sigma_2\otimes\eta_1 = \begin{pmatrix} 0 & \mathbf{1} & -i & 0 \\ 1 & 0 & 0 & -i \\ i & 0 & 0 & 1 \\ 0 & i & 1 & 0 \end{pmatrix}$$


(The bold $\mathbf{1}$ is just notation, see below!) I am not asking you to redo the calculations for me but does $(3)$ make sense?


Appendix. My calculations were done in the following fashion [using equation $(2)$]: $$\tag{4}\langle 1| \sigma_2\otimes \eta_1 |1\rangle = \\ \langle j=1,y=1| \sigma_2\otimes \eta_1 |i=1,x=1\rangle \\ = [\sigma_2]_{11}\delta_{11}+\delta_{11}[\eta_1]_{11} \\ = 0.$$ Similarly for eg $$\tag{5} \langle 1| \sigma_2\otimes \eta_1 |2\rangle = \\ \langle j=1,y=1| \sigma_2\otimes \eta_1 |i=1,x=2\rangle \\ = [\sigma_2]_{11}\delta_{12}+\delta_{11}[\eta_1]_{12} \\ = 1. $$ This is how the bold $\mathbf{1}$ was obtained.


So are my calculations $(4), (5)$ totally wrong?


The Pauli matrices $$\begin{align} \sigma_1 &= \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \\ \sigma_2 &= \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \\ \sigma_3 &= \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix} \,. \end{align} $$




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...