Tuesday 5 September 2017

quantum mechanics - In the famous Einstein's Photoelectric effect, why does the intensity of light not raise the kinetic energy of the emitted electrons?


The work function of any metal is no doubt constant for it is related to electromagnetic attraction between electrons and protons. However on increasing the intensity of any light source the kinetic energy of the emitting electrons must increase, mustn't it? Let us assume there is only 1 electron in a metal surface. Let hf be the energy required to expel it out with a velocity 'v'. Again let us increase the intensity of the source keeping frequency constant. Now ' hf ' will change to 'nhf' where n = no. of photons striking on electron at a same time. Since work function is constant the only variable must be 'v' letting it increase its K.E. This clearly shows Kinetic energy of emitting electrons is directly proportional to the intensity of light source. If kinetic energy depends upon the intensity, stopping potential for a particular frequency of light for a particular metal is a variable quantity. It is true that on increasing the intensity the no.of photo electrons will increase. But what if the no.of electrons in a metallic plate is constant. Suppose I have only two electrons in a metal, on increasing intensity i.e on increasing the no.of photons , the no.of photons colliding from different sides simultaneously may increase . So, K.E of emitted electron must increase on increasing intensity, mustn't it? But experimental data doesn't show this. What is wrong? Help me out




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...