The work function of any metal is no doubt constant for it is related to electromagnetic attraction between electrons and protons. However on increasing the intensity of any light source the kinetic energy of the emitting electrons must increase, mustn't it? Let us assume there is only 1 electron in a metal surface. Let hf be the energy required to expel it out with a velocity 'v'. Again let us increase the intensity of the source keeping frequency constant. Now ' hf ' will change to 'nhf' where n = no. of photons striking on electron at a same time. Since work function is constant the only variable must be 'v' letting it increase its K.E. This clearly shows Kinetic energy of emitting electrons is directly proportional to the intensity of light source. If kinetic energy depends upon the intensity, stopping potential for a particular frequency of light for a particular metal is a variable quantity. It is true that on increasing the intensity the no.of photo electrons will increase. But what if the no.of electrons in a metallic plate is constant. Suppose I have only two electrons in a metal, on increasing intensity i.e on increasing the no.of photons , the no.of photons colliding from different sides simultaneously may increase . So, K.E of emitted electron must increase on increasing intensity, mustn't it? But experimental data doesn't show this. What is wrong? Help me out
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
I have searched for equations regarding craters and I came across two of them. The first one is from this NOAO website in the level two sec...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
-
Yesterday, I understood what it means to say that the moon is constantly falling (from a lecture by Richard Feynman ). In the picture below ...
No comments:
Post a Comment