Friday, 5 August 2016

waves - Help understanding resolution between two light beams


Today I read that if you have two light beams with a wavelength difference equal to $\Delta$$\lambda$ to resolve the two into two disjoint spots, the following must be true:


enter image description here



Where N is the number of slits in a diffraction grating. I've been drawing the situation and looking online but I can't quite figure out why this is the condition. Could anyone give some reasoning why this condition is true. Also does this condition have a name?



Answer



You should first of all read the answers to Fringe width and spacing and number of slits in diffraction experiments and Intensity of subsidiary maxima in a diffraction grating pattern? where it is explained that as the number of slits $N$ increases the width of the principal maxima decreases.
For a grating with $N$ slits there are $N-1$ subsidiary minima and $N-2$ subsidiary maxima between principal maxima.


The condition for the $n^{\rm th}$ order principal maximum is $n\lambda = d \sin \theta_{\rm n}$ where $\lambda$ is the wavelength and $d$ is the adjacent slit separation.


If there is a grating with $N$ slits then the path difference between the first slit and the $N^{\rm th}$ slit is approximately $Nn\lambda$ remembering that $N\gg 1$.
The first subsidiary minimum occurs when the path difference between the two extreme slits is $Nn\lambda\pm \lambda$.


The Rayleigh criterion for just being able to resolve two wavelengths is that the principal maximum for light of wavelength $\lambda + \Delta \lambda$ occurs at an adjacent subsidiary minimum to the principal maximum of wavelength $\lambda$.


This means that $Nn\lambda+\lambda = Nn(\lambda +\Delta \lambda) \Rightarrow \dfrac{\lambda }{\Delta \lambda} = Nn$ which is the resolving power of a diffraction grating with $N$ slits in the $n^{\rm th}$ order.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...